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ABSTRACT (CIR). Moreover, knowledge of the latter parameter is ndede

for reliable data detection, but its estimation is often edha
task and relatively little work can be found in the literagur

In [1], the conditional model order estimator (CME) critari
rproposed by Kay [2] is used for estimating the MIMO channel
order in a space-time coded system. CME is less restrictive,
nd has been shown to attain better performance, than the

Practical equalization of multiple input multiple output
(MIMO) channels poses several difficulties. Namely, it is
well known that the complexity of maximura posteriori

(MAP) data detection grows exponentially with the numbe
of inputs and the channel order, i.e., the length of th

channel impulse response (CIR). Moreover, knowledge o inimum  description length (MDL) technique [2]. The

.tthe Iatt.ter ?arammg IS niEdj(: fol: re“éible d?ta detedbmxr;], mehod in [1] is based on the assumption that the CIR is fixed
IS estimation 1S often a hard task and very 1ew papers havy e quration of a complete frame and the processing of the
tackled the problem. In this article, we propose the u

) 1S%lock of available observations is carried out off-linebatch
of the sequential Monte Carlo (SMC) methodology to bUIIdmode. Alternatively, a subspace-based technique for blind

quasi-MAP MIMO equalizers with polynomial complexity, channel order estimation is derived in [3], but the channel

that admit a parallel implementation and can handle th?n that work is also assumed static and the order estimator

uncertainty in the channel order. In particular, we denverequires the batch processing of a large block of obsemtio

both optimal and complexity-constrained SMC algorithms . , ) )
In this paper, we investigate a completely different

for joint data detection, channel order and CIR estimation X

in frequency and time-selective MIMO channels. Computefappro"JlCh to the problem, based on the sequ_ennql M_onte
simulation results are presented to illustrate the peréme Carlo (SMC) methodqlogy, also _knowr_l as particle f||te_r|ng
of the proposed techniques. (PF) [4,5]. SMC algorithms are simulation-based techrsgue

for sequential and adaptive signal processing that aim at
approximating thea posteriori probability density function
1. INTRODUCTION (pdf) of a time-varying signal of interest (SOI), given some
related observations, using a discrete probability measur
The fact that the capacity of a wireless channel grows ligear with a random support. These methods explore the space
with the minimum number of transmitting and receiving of the SOI by generating random samples (termed particles)
elements has attracted much attention on the multiple Inplﬁom a proposa| distribution. The partides are then agﬂﬂgn
multiple output (MIMO) channels that appear naturally inproper weights, which are recursively computed, and yield
many common scenarios, such as multiuser and multiantenfige discrete approximation of tizeposterioripdf.
systems. However, practical equalization of MIMO channels The main advantage of the SMC methodology is
poses several difficulties. Namely, it is well known that theits generality, which enables its application to numerous
complexity of maximurra posteriori(MAP) data detection problems in ’the field of communications, including the

g;ows Iexp(;)ne_nnallyr/] V\Illth t::efnhuml?]er Ofl _mputls and theadaptive equalization of MIMO channels [6]. In a previous

channelorder, .., the length of the channel impulse mespo work [7], we proposed the use of the SMC framework to
This work was supported hylinisterio de Educacion y Cienciaf Spain build qua}s"MAP MIMO adapt|ve equa!'zers with pqunom|al

(project TEC2004-06451-C05-01) complexity and amenable to parallel implementation. Here,
This work was supported bomunidad Autonoma de Madrigroject  we extend these techniques to handle the uncertainty in

PRO-MULTIDIS-CM, ref. S0505/TIC/0223) Ministerio de Educacion : : :
y Ciencia (projects DOIRAS, ref. TIC2003-02602, and MONIN, ref. the channel order. In particular, we derive both optimal

TEC2006-13514-C02-01) and the EC (Network of ExcellencRUGSE’, anq co_rnplexiw-constraingd SMC algorithms for the joint
ref. IST-4-027738). estimation of the transmitted data, the channel order and




the CIR estimation in a frequency and time-selective MIMO  Because of the channel frequency-selectivity, some type

system. of smoothing is needed for reliable data detection. In that
The remaining of this paper is organized as follows.case, it is useful to consider the stacked model

In Section 2, the discrete-time signal model of a MIMO

transmission system with frequency and time-selective Xt,a = HiaSt,a + Ut a, )

channel is described. The optimal adaptive MIMO equalizer

that jointly estimates the transmitted symbols and the MIMOvhere 1 < a < m is the smoothing lagx:, =

CIR, including its order, is introduced in Section 3. Sincelx; --x/,]" is the L(a + 1) x 1 vector of stacked

its computational load makes the latter technique impzakti  observations,s,, = [s,_,,.1---s/.,]’ has dimensions

complexity-constrained methods are proposed in Section 4Y(m +a) x 1, u;, = [u - ~-utT+a]T and

Computer simulation results are shown in Section 5 and,

finally, Section 6 is devoted to the conclusions. [ He(m —1) 0 e 0 T
Ht(m—2) Ht+1(m—1) 0
2. SIGNAL MODEL 5 Hega(m —2)
H. (0 : . Hipa(m—1
The discrete-time equivalent model of a MIMO transmissiont,« = t_( ) _ thalm = 1)
system with frequency-selective and time-varying CIR can b : Hi+1(0) " Hipa(m —2)
written as : : . :
m—1 0 0 e Heta(0)
Xt = Z H;s¢—i +u = Hy5: + ug, (1) - -(4)
= istheL(a + 1) x N(m + a) stacked channel matrix.
where

o {H,,}";" is theL x N-dimensional CIR, of length 3. SMC EQUALIZERS FOR UNKNOWN CHANNEL
. ORDER
m;

e the N x 1 input vectors, = [s1, .. .,sN,t]T contains 3.1. Sequential Importance Sampling

the N symbols transmitted at time, which are o
modeled as discrete uniform random variables witfM0St SMC methods rely upon the principle of Importance

finite alphabes: Sampling (IS) for building an _empirical approximati_on of a
desired pdf, sayp(z), by drawing samples from a different

e x; is the x 1 vector of observations: distribution, known asimportance functionor proposal
pdf, and denoted;(z). These samples are then assigned
e H, = [H,,_1.:---Hy,] is an alternativeL x Nm  appropriate normalizedhportanceweights, i.e.,
matrix representing the CIR; _
@ d w0l o 2E?)
o5, = [s/ ,,41-s/]T is an Nm x 1 vector v ~q(z) and w oc q(z®)’
that includes all the symbols involved in theth
observation; whereM is the number of samples, usually ternptticles
i = 1,...,M and the weight normalization implies that
e andu; is an additive white Gaussian noise (AWGN) Zij\i1 w® =1,
process with zero mean and covariance matjf, In order to detect the transmitted symbols, it is natural
(I denotes thd. x L identity matrix). to aim at the approximation of tha posteriori marginal

pdf of the data,p(so.¢|x0.¢), Which contains all relevant
statistical information for the optimal (Bayesian) estiioa

of sg.;. Therefore, the application of the IS principle requires
to choose an importance function of the forts.:|xo.:),

Ror which the dimension of the argument grows with time.
Fortunately, one of the most appealing features of the SMC
H; =yH; 1 +Vy, (2) approach is its potential for online processing. Indeed, th

The CIR length,m, is modeled as a discrete random
variable with uniforma priori probability distribution in a
known finite setM = {1,2,...,|M|}. We assume a first-
order auto-regressive (AR) model for the channel evolutio
[8],i.e.,

wherel — e < v < 1 (for smalle > 0) andV; is a matrix of 1 . . .
.. . . . We will always use the ternpdf, even for discrete random variables,
i.i.d. Gaussian random variables with zero mean and knOWane any probability mass function can be expressed as aspuf sums of

variancer2. Dirac delta functions.



IS principle can be sequentially applied by exploiting thethat generates a set &f new and equally weighted particles,
recursive decomposition of the posterior pdf {s$) 1/M}yM,, by drawing from the discrete probability
distribution p,.,(s()) = w!”. However, more efficient
methods have been proposed in the literature and they can be
which is easily derived by taking into account Bayes’directly applied to our problem, including those specifical
theorem, the priori uniform distribution of the symbols, and designed to enable implementation with parallel-procegsi

an adequate importance function that can be factored as ~ architectures [9].

p(So:t|X0:t) o0 p(xt|So:t,Xo:t—l)P(SO:t—1|Xo:t—1), 5)

q(so:tx0:t) = q(st|so:t—1,%0:¢)q(s0:e—1[x0:e-1).  (6) 3.2, Optimal Smoothing Equalizer with Unknown Or der

The recursive algorithm that combines the IS principle andMe aim at approximating the posterior pdf of the data,
decompositions (5) and (6) to build a discrete randonmp(sy.:|Xo.t+4), Wherea is a smoothing lag. The channel order
measure that approximates the posterior pdf is callei a discrete random variable with support in the finite/stt
sequential importance sampling (SIS) [4,5]. To be specificas described in Section 2. So as to account for all possible
orders, we assume = |M| — 1, which guarantees that all

) i=1 o ] observations vectors that involve the symbols,rare taken
attimet. When a new observation is collected attime 1, y,4ather for smoothing. It turns out that the desired pdfn
the SIS algorithm proceeds through the following steps tq, 5y tically calculated by “summing out” the random chdnne
recursively computél;., : orderm and the unknown symbo. 1.4,

. Ny M
letQ; = {sgﬁ,w@}_ denote the set of weighted particles

1. Importance samplinggﬁz1 ~ q(st+1|sg;1,x0:t+1). P(S0:¢[X0:t4a) X

2. Welght updateibgle = gi) W ZmeM Zst+1:t+a p(xt:t+a|m, S0:t+as X():tfl) X
BBe41180:2 %041 P(m|So:t—1,X0:¢—1)P(S0:¢—1[X0:t-1)- 9)

3. Weight normalizatiomut(z) = % The posterior pmf of the channel order at time— 1,
L=t Pe p(m|So.t—1,X0:¢—1), can be computed recursively, up to a

It has been shown in [7] that, assuming a known channgdroportionality constant, using Bayes’ theorem,

orderm € M, the likelihood in the weight update step,

p(xt+1|sgf)t+1,x0;t), can be obtained analytically using the p(m|So:t—1,X0:t—1) o< p(Xe—1]m, So:4—1, Xo:t—2) X

Kalman filter to integrate out the CIR. xp(m|So:t—2, X0:t—2)
Given €, it is straightforward to obtain a point-mass t—1
approximation of thex posterioripdf, namely = p(m) H P(Xpe |y S0y X0:k—1))s
k=0
M
i i 10
pM(SO:t|XO:t) - 25(50:15 - Sébwg )7 (7) ( )
=1

wherep(m) = ﬁ is thea priori pdf of m.
whered is the Dirac delta function, and estimators can be Decomposition in equation (9) enables the application
derived frompy (so.¢|xo.¢) €asily. In particular, the marginal of the SIS algorithm with the optimal importance function,
MAP symbol detector is which is summarized by the two steps given by (11) and
(12) (see top of next page). The former defines the proposal
map M @) () function, from which symbol vecta; is drawn, and the latter
Sy T argmax Z‘S(Sf =8 Jwe o is the weight update equation.
=1 The computation of the likelihoods in equations (9) and
which amounts to selecting the particle with the highes{10) is carried out using a bank df\f| Kalman filters
accumulated weight (note that, since the symbols are déscre (One pera priori possible channel order). Moreover, from
some particles can be replicated). (12) it is seen that the algorithm demands the computation
One well-known problem in the practical implementationof [M||S|V* likelihoods per particle, which yields a
of the SIS algorithm is that after few time steps most ofcomputational load that cannot be afforded in most pralctica
the particles have importance weights with negligible galu CaSes.
(very close to zero) [5]. The common solution to this problem
is toresamplehe particles. Resampling is an algorithmic step4. A COMPLEXITY-CONSTRAINED ALTERNATIVE
that stochastically discards particles with small weigtttde
replicating those with significant weight. In this paper, weln order to design SMC methods capable of handling an
consider only the conceptually simplest resampling scheme&nknown channel order with a tractable complexity, we have



S et Yoy nrs PXtittal Sy Srgtitta Xou—)P(mISS) 1 Xo:-1)
Q(Stl)(O?t-i—a) = (i) (@) ~ (11)
Zst > mem P(MIsy;—1,X0:6-1) Z:QHHH P(Xtettalm, Sy 15 Stittar X0:t—1)

wily = wi,_ DD (S 1, Xo:t—1) > P(Xesttalm, Sg -1, Sutvar Xou—1) (12)

St meM Sit1:t+a

S

extended the technique in [7] to incorporate and exploit th€13) and (15) is
information of thea posteriori pdf of m. In particular,

we aim at the approximation of the joint smoothing pdf wtfza x nga 1%
of the sequence of symbol vectors and a set of sequences > Pttt a|mS0: 04 0 Him;0: 040 5X0:6—1)
of channel matrices indexed by the elementsAdf i.e., a(StittalS0it—1,{Hm;0:t+a } e g X0:t4a)
p(SO:t+aa {Hm;O:t-l—a}meM |X0:t+a) where Hm;O:t+aa m = P(m‘SO:tfl-,HWL;U:t*l-VXU:tfl)P({HM;t:tJra}mEM‘{Hm;tfl}mgM)
., [M|, is the sequence df x Nm dimensional channel a({Hmstttatime S0t 1, {Hms0:t -1} c g X0t 4a)
matrices obtained by assuming each possible channel arder i (16)

M. Using this notation, the desired pdf is decomposed as
Drawing from
(15) and applying (16) yields a new set of weighted particles

p(SO:t+a7 {Hm;O:t+a}meM |X0:t+a) X M
Zmp(xt:t+a|m; SO:tJra; Hm;O:tJraa XO:tfl) X Qt+a = { (Sélzpray {HSL -0: t+a} GM) wg:—a}‘ ’ and the
P(m|50:t—1, Hrn;():t—laxO:t—l)>< =
p({Hm;t:t+a}meM | {Hm;t—l}me/\/{)x u @
p (SO:t—h {H m;O:t—l}meM |X0:t—l) (13) p(SOStJraa H0tt+a|xl:t+a) ~ Zz:l wtia X
0(s0:t4a — S((Jl:i-f-a) ZZGM (Ho:t4a — HE :0: t+a) (17)
where the term p(m|30:t—17 Hm;O:t—la XO:t—l)

can be computed recursively just like in (10), but whithoutintegrating (17) oves; 1.t+4 and{Hm;Hl;Ha}meM, yields
the need of Kalman filtering (due to the conditioning on thean estimate of the desired joint smooting pdf,
channel sequendg,,.o..—1), i.e.,

approximation of the corresponding posterlorlf)df

p(SO:h HO:t|X1:t+a) ~ f fzzj\il w§2a5(50:t+a - Sg;%_i_a)

- plim|30:t71, Hm;O:)t(la XO:Tl) X y | X ZzeM 0(Hot4q — H%:Ha)
p(m|So:t—2, m;O:t72;XO:t72 P(X¢—1|mM, Sp—1, mit—1 M i [ i
P VLU LR D RSVELL T 1

(18)

where the likelihood function is Gaussian with mean

: ; Successively drawing from (15), updating the weights via
H.nit—1S—1 @n covariance matrig21y,.

(16) and approximating the smoothing pdf by integration as

Our goal is to take advantage of our ability to compute thgn (18) yields the new weighted
channel order posterior pdf (14) so as to design an efficient @) @) @)
importance function to draw both from the channel and théarticle setQ;, = {(So 0 {Hm 0: t} €M> wt+a} :

m i=1
data processes. We propose a general scheme of the form apximate marginal MAP symbol estimates are computed
as
q(SO:t+aa {Hm:O:t+a} eM |X0:t+a) = M
; m Amap _ (1) (2)
q(st:t+a|50:t—17 {Hm;O:t—i-a}meM 7X0:t+a) St —arg Ins%x ; 5(St St )wt—i-a ' (19)

H,,. t—15 {Hm:0:6— Xo: . . .
¢ ({Hmsttrat e Sot-15 {Hmot 1} e pr - Xot4a) Next, we elaborate the details of the importance functions

q(S0:t—15 {Hm:0:0- 1}, e 4 X0:14a) (15 from which the symbols and the channel CIRs are drawn.

with Q(St:t+a|s():t—la {Hm;O:t+a}meM aXO:t+a) (the data
importance function), and
q({Hm;t:t+a}m€M |SO:t717 {Hm;O:tfl}meM 7X0:t+a) The form of function

(the channel importance function) to be specifically defined

later. The general form of the weight update equation giveng ({Hm;t:t-i-a}me./\/l S0:¢—15 {Hm;O:t—l}meM ,xo;t+d) (20)

4.1. Channel sampling scheme



in (15) implies that we need to draw samples of the channedampling of the symbol vectas.;.,. Specifically,Nm x 1
matricedﬁﬁf;);t:tﬂ for each one of the possible channel ordersdimensional vectors of symbol estimates are computed as
m e M. (l) ("

For the sampling scheme to be sufficiently efficient (in Yt = Wy Xtm—1 (29)
order to avoid the need of a very large number of particles)ror i = 1,...,Mandm = 1,...,|M|. Note that, for
we propose to run a bank pi| adaptive channel estimators, eachm € M, the smoothing lag in the observations of (29),
one for each channel order. In particul,),, m = X¢.m_1, is selected asn — 1, which yields matrix filters,

-»| M, are drawn from Gaussian proposal pdfs W with dimensionsNm x Lm. When the filters are

m;t?
i correctly built, the components of
H§7*L),t ~ ( |7Hm t—1» 012‘11) ) (21) y p

. T
(@) (@) (@)
where the meanyH{), , depends on the output of the Ymit = [Jmittr - it - oo YmilVotm—1 (30)

chan_n_el estimator for particle and orderm_ v is the are estimates ofi ¢,..., 5N, - SN t4m—1-
coefficient of the AR channel model ang; is a design Each matrix filter is designed adightweightversion of
pa(ri?meter. Then, for egoln €M, subseq_uent sgmples, the minimum mean square error (MMSE) detector, derived by
H, 1114+ are drawn using the AR model directly, i.e.,  applying the inversion lemma [10] to avoid the computation
@ ) of inverse matrices. In particular, for each € M, we
H, o, ~ N(Hy, Y = i e-1001), k=1, a recursively approximate the inverse of the autocorrafatio
(22)  matrix
Moreover, since samples with different channel orders are .
statistically independent, we can write
mtw_ ZO& Xtm 1Xtm 1 (31)
q ({Hm;t:tJra}meM |5):t717 {Hm;O:tfl}meM 7X0:t+a) =
Hmqu(Hm;t t+a|SOt laHm O:t—laXO:t+a) = as
[Iner N(H mthHmt 1, o5I)x leoz < Ip, (initialization) (32)
HZ:l N( m;t+k|7Hm);t+k 1 EI) (23) let x = a_l (ILW - gWthfmfl) Rmt 1,z (33)

As an adaptive channel estimator, we propose to use theghered < o < 1 is a forgetting factor and
exponentially-weighted RLS algorithm [10]. Specificafiyy

71 1
eachm € M andeach = 1,..., M, we need to compute Gt = R it—1%Xt,m—1
mit — H

1 1
1+« X 1R —1Xt,m—1

(34)

t
(1 . — — 2
Hm):,t = argmin {Z A F lxp, — H | } » (24 isagainvector. The linear MMSE filters are then constructed

where0 < A < 1 is a forgetting factor, and the subindex wi), =o’R;), zHSl tym—1E (35)
m in 5, stands for the number of stacked symbol vectorssor i — 1. Mandm = 1.. , M, wheres? is the symbol
namelys,,;x = [s;_,,.1---s{]|" The sequence of problems ’ ON (1) N 0 ° _
defined by (24) are recurswely solved using the followingPower,E = { niN")L " ] andH,, ., , is obtained
ti . . i .
equations by stacking matrlcern);t:terf1 in the same way a¥, 4
-1 X .
R, o Iy, (initialization) (25) results from stackingl,; . in (4). |
’ Since the maximum smoothing lag is = |M| — 1,
() AT 1R(Z g 1§ffl ‘ corresponding to the lag needed for the maximum channel
8mit — 1+/\_1S(z RO S0 (26) order, for eachm € M such thatm < |M] it becomes
. . mit Tmit—15m;t o necessary to apply a sequence of filters
Hy) = H\ ek ( s Hi?;tfl) wi W (36)
(27) mit 0 T it (| M| —m)?
-1 _ G -1 where
Rgn);t = At (INm ggn)tsgn)t ) Rgn);t—l- (28) 0 0
Wm itk 02Rm1t+k anlm stk —1 B (37)
4.2. Datasampling scheme As a result, for each = 1,.. LM and eachm € M we
Following [7], we propose to use a bank of matrix linearobtain a sequence of estimaty:%);l_’t, e ,yfn N.t+a TOF the

filters to obtain soft symbol estimates that enable the efiici symbolss ¢, ..., SN t+q-



Let yfi);jﬁk denote the linear estimate of; !
assuming channel orden. If the symbols are binary,

sj+k € {£1} (extension to higher order constellations is
straight{orward), we can assign pr.obabilitiégmj, o X 01 fo= \
exp{—g|ym;jyt+k — 1|* (whereo? is a design parameter) \ *

and q(_iim e = 1 — q$i7j,t+k. These probabilities are

conditional (as indicated by the notation) on channel ordér °* \\

m. We combine them by using tree posterioripdf of the
channel order, to yield

0.001

LMS-D-SIS

(i) _ Y y o
915046 = q+1\m7j,t+k usis ~
meM RLS—D—SIgtjn%e_rselssumated (m=2)

‘RLS-D-SIS nveres:imated (m:A? —
4 6 8 10 12 14
SNR (dB)

p(m|50:t—17 Hm;O:t—laXO:t—l) le-04

(@) _ (@)
9-1jt+6 = Z 9 jm,jt+k
meM Fig. 1. BER of the SMC equalizers, withf = 30 particles,
P(mSo:—1,Hm0:0-1,%0:0-1)- (38)  and the MLSD receiver for several values of the SNR (dB).

- . . . The true channel order i& = 3 and the maximum channel
These probabilities enable us to define a discrete b'naréfrderforthe U-SIS is set da1| = 4.

probability distribution from which a sampléf2+k can be

drawn. Repeating this process for all symbols from tinte

time¢+a we obtain the desired sampig), .. The evaluation e The two algorithms presented in this work for unknown

Of q(Stit+alSo:t—1, {Hmi0ita bypepq s Xoita) IS carried out channel order. The optimal procedure, described is

by adequately multiplying the probabilitiﬁqéi)1 jioforj = Seg:tlon 32, is Iapeled I'S|$ (Integrated—o_rder SI_S)

L. Nandt. ... t+a. while the complexity-constrained approach in Section
T T 4 is labeled ‘U-SIS’ (Unknown channel order-SIS).

5. SIMULATION RESULTS Figure 1 shows the bit error rate (BER) attained by the

SMC equalizers, with\/ = 30 particles, and the genie-

Consider a simple system witii = 2 transmitting antennas, aid_ed MLSD de_tector for several values of the signal-tcseoi
L = 3 receiving antennas and CIR length = 3. The ratio (SNR). It is obsgrved tha_lt t_he performance of the I-SIS
parameters of the channel AR process are= 1 — 105 and MLSD receivers is very similar (the BER curve presents

ando? — 10— Also assume a BPSK modulation format Practically the same slope). On the other hand, the U-SIS
and burst data transmission in blocks f6f = 300 symbol ~Meéthod appears suffers from some performance loss with
vectors (i.e., 600 binary symbols overall), includifig= 30 respect to the optimal method (in exchange for the complexit

pilot symbols from each transmitter. reduction) and the RLS-D-SIS receiver with the true channel

Within this simulation setup, we have compared: orderlén = ,3)’ b_Ut it outperforms the two RLS'D'_SIS
equalizers with mismatched order. Notice, in particular,
e The two complexity-constrained SMC equalizersthe very poor behavior of the RLS-D-SIS technique with
introduced in [7], that assume exact knowledge of the!nderestimatedh.
channel order, namely, the ‘RLS-D-SIS’ (RLS-Delayed ~ For eachy, the U-SIS algorithm computes tagoosteriori
sampling-SIS) and ‘LMS-D-SIS’ (Least Mean SquaresPdf of the random channel order M. Figure 2 (left)
- Delayed sampling - SIS). They only differ in the depicts the evolution of this pdf for = 31 : 300, i.e.,
channel estimator they use (the RLS algorithm and théhe duration of a data frame (notice that no channel order
LMS algorithm, respectively). estimation is carried out fob < ¢ < 30). It can be seen
that the probability of the actual channel ordet, = 3,
e Two ‘RLS-D-SIS’ algorithms that work considering an quickly converges to a value very close to 1, while the other
incorrect channel order: one of them underestimating iprobabilities practically vanish. The results are the agerof
(m = 2) and the other overestimating (= 4). 50 independent simulations.
In order to check the robustness of the U-SIS technique,
e A genie-aided maximum likelihood sequence detectowe have repeated the same experiment for a channel with
(labeled ‘MLSD’) implemented using the Viterbi actual ordern = 5 and maximum ordefM| = 8. Figure
algorithm with perfect knowledge of the time varying 2 (right) shows the results. It can be seen that the proposed
CIR (including its ordermn). algorithm assigns a much higher probability (again, clase t
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Fig. 2. Left: Time evolution of thea posterioripdf of the different channel orders, as computed by the UsSéthod. The
actual channel order is = 3, the maximum possible order 81| = 4 and the number of particles i¥ = 30. Right: Time

evolution of thea posterioripdf of the different channel orders,
m = 5, the maximum possible order|id1| = 8 and the number

1) to the true channel order, while the other possible values

receive very small probabilities (practically negligibier
m < 5).

6. CONCLUSIONS

In this article, we have proposed the application of the SMC
methodology to build quasi-MAP adaptive equalizers for
MIMO systems that can handle the uncertainty in the channel
order. In particular, we have derived both optimal (I-SI8J a
complexity-constrained (U-SIS) SMC algorithms for joint
data detection, channel order and CIR estimation in frequen
and time-selective MIMO channels. The complexity of the
optimal I-SIS equalizer grows exponentially with the chann
dimensions, while U-SIS is constrained to a polynomial
computational load. Besides the analytical derivationhef t
algorithms, we have shown computer simulation results that
illustrate the performance of the proposed techniques.
Compared to existing methods for MIMO channel order
estimation, the proposed SMC-based techniques:

e are designed for joint data detection and CIR estimation
(including the order);

e perform sequential (adaptive) processing, rather than
batch mode computations like the existing CME [1] and
subspace-based [3] methods;

e produce soft order information (posterior probabilities)
that can be exploited in different ways, instead of just
choosing one particular order as in [1, 3]; and

e has been shown to work with relatively low and
medium SNRs (below 10 dB), while the subspace

as computed by the Uns#8hod. The actual channel order is
of particlesid = 30.

technique in [3] is very sensitive to noise (according to

the plots in that paper, accurate order detection is only
achieved in general when SNR¢,20 dB) and the CME-
based algorithm of [1] attains only a relatively modest

percentage of correct order detection (which is never
higher than 85% for the range 10iSNR;j20 dB and a
simple, order 2, channel).
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