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Joaqúın Mı́guez

Depto. de Teorı́a de la Señal y Comunicaciones
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ABSTRACT

Practical equalization of multiple input multiple output
(MIMO) channels poses several difficulties. Namely, it is
well known that the complexity of maximuma posteriori
(MAP) data detection grows exponentially with the number
of inputs and the channel order, i.e., the length of the
channel impulse response (CIR). Moreover, knowledge of
the latter parameter is needed for reliable data detection,but
its estimation is often a hard task and very few papers have
tackled the problem. In this article, we propose the use
of the sequential Monte Carlo (SMC) methodology to build
quasi-MAP MIMO equalizers with polynomial complexity,
that admit a parallel implementation and can handle the
uncertainty in the channel order. In particular, we derive
both optimal and complexity-constrained SMC algorithms
for joint data detection, channel order and CIR estimation
in frequency and time-selective MIMO channels. Computer
simulation results are presented to illustrate the performance
of the proposed techniques.

1. INTRODUCTION

The fact that the capacity of a wireless channel grows linearly
with the minimum number of transmitting and receiving
elements has attracted much attention on the multiple input
multiple output (MIMO) channels that appear naturally in
many common scenarios, such as multiuser and multiantenna
systems. However, practical equalization of MIMO channels
poses several difficulties. Namely, it is well known that the
complexity of maximuma posteriori (MAP) data detection
grows exponentially with the number of inputs and the
channel order, i.e., the length of the channel impulse response
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(CIR). Moreover, knowledge of the latter parameter is needed
for reliable data detection, but its estimation is often a hard
task and relatively little work can be found in the literature.
In [1], the conditional model order estimator (CME) criterion
proposed by Kay [2] is used for estimating the MIMO channel
order in a space-time coded system. CME is less restrictive,
and has been shown to attain better performance, than the
minimum description length (MDL) technique [2]. The
mehod in [1] is based on the assumption that the CIR is fixed
for the duration of a complete frame and the processing of the
block of available observations is carried out off-line, inbatch
mode. Alternatively, a subspace-based technique for blind
channel order estimation is derived in [3], but the channel
in that work is also assumed static and the order estimator
requires the batch processing of a large block of observations.

In this paper, we investigate a completely different
approach to the problem, based on the sequential Monte
Carlo (SMC) methodology, also known as particle filtering
(PF) [4, 5]. SMC algorithms are simulation-based techniques
for sequential and adaptive signal processing that aim at
approximating thea posteriori probability density function
(pdf) of a time-varying signal of interest (SOI), given some
related observations, using a discrete probability measure
with a random support. These methods explore the space
of the SOI by generating random samples (termed particles)
from a proposal distribution. The particles are then assigned
proper weights, which are recursively computed, and yield
the discrete approximation of thea posterioripdf.

The main advantage of the SMC methodology is
its generality, which enables its application to numerous
problems in the field of communications, including the
adaptive equalization of MIMO channels [6]. In a previous
work [7], we proposed the use of the SMC framework to
build quasi-MAP MIMO adaptive equalizers with polynomial
complexity and amenable to parallel implementation. Here,
we extend these techniques to handle the uncertainty in
the channel order. In particular, we derive both optimal
and complexity-constrained SMC algorithms for the joint
estimation of the transmitted data, the channel order and



the CIR estimation in a frequency and time-selective MIMO
system.

The remaining of this paper is organized as follows.
In Section 2, the discrete-time signal model of a MIMO
transmission system with frequency and time-selective
channel is described. The optimal adaptive MIMO equalizer
that jointly estimates the transmitted symbols and the MIMO
CIR, including its order, is introduced in Section 3. Since
its computational load makes the latter technique impractical,
complexity-constrained methods are proposed in Section 4.
Computer simulation results are shown in Section 5 and,
finally, Section 6 is devoted to the conclusions.

2. SIGNAL MODEL

The discrete-time equivalent model of a MIMO transmission
system with frequency-selective and time-varying CIR can be
written as

xt =

m−1
∑

i=0

Hi,tst−i + ut = Htst + ut, (1)

where

• {Hi,t}
m−1
i=0 is theL × N -dimensional CIR, of length

m;

• theN × 1 input vectorst = [s1,t, . . . , sN,t]
⊤ contains

the N symbols transmitted at timet, which are
modeled as discrete uniform random variables with
finite alphabetS;

• xt is theL × 1 vector of observations;

• Ht = [Hm−1,t · · ·H0,t] is an alternativeL × Nm
matrix representing the CIR;

• st = [s⊤t−m+1 · · · s
⊤
t ]⊤ is an Nm × 1 vector

that includes all the symbols involved in thet-th
observation;

• andut is an additive white Gaussian noise (AWGN)
process with zero mean and covariance matrixσ2

uIL

(IL denotes theL × L identity matrix).

The CIR length,m, is modeled as a discrete random
variable with uniforma priori probability distribution in a
known finite setM = {1, 2, . . . , |M|}. We assume a first-
order auto-regressive (AR) model for the channel evolution
[8], i.e.,

Ht = γHt−1 + Vt, (2)

where1 − ǫ < γ < 1 (for smallǫ > 0) andVt is a matrix of
i.i.d. Gaussian random variables with zero mean and known
varianceσ2

v .

Because of the channel frequency-selectivity, some type
of smoothing is needed for reliable data detection. In that
case, it is useful to consider the stacked model

xt,a = Ht,ast,a + ut,a, (3)

where 1 ≤ a < m is the smoothing lag,xt,a =
[x⊤

t · · ·x⊤
t+a]⊤ is the L(a + 1) × 1 vector of stacked

observations,st,a = [s⊤t−m+1 · · · s
⊤
t+a]⊤ has dimensions

N(m + a) × 1, ut,a = [u⊤
t · · ·u⊤

t+a]⊤ and

Ht,a =

2
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(4)
is theL(a + 1) × N(m + a) stacked channel matrix.

3. SMC EQUALIZERS FOR UNKNOWN CHANNEL
ORDER

3.1. Sequential Importance Sampling

Most SMC methods rely upon the principle of Importance
Sampling (IS) for building an empirical approximation of a
desired pdf1, sayp(x), by drawing samples from a different
distribution, known asimportance functionor proposal
pdf, and denotedq(x). These samples are then assigned
appropriate normalizedimportanceweights, i.e.,

x(i) ∼ q(x) and w(i) ∝
p(x(i))

q(x(i))
,

whereM is the number of samples, usually termedparticles,
i = 1, . . . , M and the weight normalization implies that
∑M

i=1 w(i) = 1.
In order to detect the transmitted symbols, it is natural

to aim at the approximation of thea posteriori marginal
pdf of the data,p(s0:t|x0:t), which contains all relevant
statistical information for the optimal (Bayesian) estimation
of s0:t. Therefore, the application of the IS principle requires
to choose an importance function of the formq(s0:t|x0:t),
for which the dimension of the argument grows with time.
Fortunately, one of the most appealing features of the SMC
approach is its potential for online processing. Indeed, the

1We will always use the termpdf, even for discrete random variables,
since any probability mass function can be expressed as a pdfusing sums of
Dirac delta functions.



IS principle can be sequentially applied by exploiting the
recursive decomposition of the posterior pdf

p(s0:t|x0:t) ∝ p(xt|s0:t,x0:t−1)p(s0:t−1|x0:t−1), (5)

which is easily derived by taking into account Bayes’
theorem, thea priori uniform distribution of the symbols, and
an adequate importance function that can be factored as

q(s0:t|x0:t) = q(st|s0:t−1,x0:t)q(s0:t−1|x0:t−1). (6)

The recursive algorithm that combines the IS principle and
decompositions (5) and (6) to build a discrete random
measure that approximates the posterior pdf is called
sequential importance sampling (SIS) [4, 5]. To be specific,

let Ωt =
{

s
(i)
0:t, w

(i)
t

}M

i=1
denote the set of weighted particles

at timet. When a new observation is collected at timet + 1,
the SIS algorithm proceeds through the following steps to
recursively computeΩt+1:

1. Importance sampling:s(i)
t+1 ∼ q(st+1|s

(i)
0:t,x0:t+1).

2. Weight update:̃w(i)
t+1 = w

(i)
t

p(xt+1|s
(i)
0:t+1,x0:t)

q(s
(i)
t+1|s

(i)
0:t,x0:t+1)

3. Weight normalization:w(i)
t =

w̃
(i)
t+1

P

N
k=1 w̃

(k)
t+1

It has been shown in [7] that, assuming a known channel
order m̃ ∈ M, the likelihood in the weight update step,
p(xt+1|s

(i)
0:t+1,x0:t), can be obtained analytically using the

Kalman filter to integrate out the CIR.
Given Ωt, it is straightforward to obtain a point-mass

approximation of thea posterioripdf, namely

pM (s0:t|x0:t) =

M
∑

i=1

δ(s0:t − s
(i)
0:t)w

(i)
t , (7)

whereδ is the Dirac delta function, and estimators can be
derived frompM (s0:t|x0:t) easily. In particular, the marginal
MAP symbol detector is

ŝ
map
t = argmax

st

{

M
∑

i=1

δ(st − s
(i)
t )w

(i)
t

}

, (8)

which amounts to selecting the particle with the highest
accumulated weight (note that, since the symbols are discrete,
some particles can be replicated).

One well-known problem in the practical implementation
of the SIS algorithm is that after few time steps most of
the particles have importance weights with negligible values
(very close to zero) [5]. The common solution to this problem
is toresamplethe particles. Resampling is an algorithmic step
that stochastically discards particles with small weightswhile
replicating those with significant weight. In this paper, we
consider only the conceptually simplest resampling scheme,

that generates a set ofM new and equally weighted particles,
{s

(i)
0:t, 1/M}M

i=1, by drawing from the discrete probability

distribution prsp(s
(i)
0:t) = w

(i)
t . However, more efficient

methods have been proposed in the literature and they can be
directly applied to our problem, including those specifically
designed to enable implementation with parallel-processing
architectures [9].

3.2. Optimal Smoothing Equalizer with Unknown Order

We aim at approximating the posterior pdf of the data,
p(s0:t|x0:t+a), wherea is a smoothing lag. The channel order
is a discrete random variable with support in the finite setM,
as described in Section 2. So as to account for all possible
orders, we assumea = |M| − 1, which guarantees that all
observations vectors that involve the symbols inst are taken
together for smoothing. It turns out that the desired pdf canbe
analytically calculated by “summing out” the random channel
orderm and the unknown symbolsst+1:t+a,

p(s0:t|x0:t+a) ∝
∑

m∈M

∑

st+1:t+a
p(xt:t+a|m, s0:t+a, x0:t−1)×

p(m|s0:t−1, x0:t−1)p(s0:t−1|x0:t−1). (9)

The posterior pmf of the channel order at timet − 1,
p(m|s0:t−1, x0:t−1), can be computed recursively, up to a
proportionality constant, using Bayes’ theorem,

p(m|s0:t−1, x0:t−1) ∝ p(xt−1|m, s0:t−1, x0:t−2) ×

×p(m|s0:t−2, x0:t−2)

= p(m)

t−1
∏

k=0

p(xk|m, s0:k,x0:k−1),

(10)

wherep(m) = 1
|M| is thea priori pdf of m.

Decomposition in equation (9) enables the application
of the SIS algorithm with the optimal importance function,
which is summarized by the two steps given by (11) and
(12) (see top of next page). The former defines the proposal
function, from which symbol vectorst is drawn, and the latter
is the weight update equation.

The computation of the likelihoods in equations (9) and
(10) is carried out using a bank of|M| Kalman filters
(one pera priori possible channel order). Moreover, from
(12) it is seen that the algorithm demands the computation
of |M||S|Na likelihoods per particle, which yields a
computational load that cannot be afforded in most practical
cases.

4. A COMPLEXITY-CONSTRAINED ALTERNATIVE

In order to design SMC methods capable of handling an
unknown channel order with a tractable complexity, we have



s
(i)
t ∼ q(st|x0:t+a) =

∑

m∈M

∑

s̃t+1:t+a
p(xt:t+a|m, s(i)0:t−1, s̃t+1:t+a, x0:t−1)p(m|s(i)0:t−1, x0:t−1)

∑

st

∑

m∈M p(m|s(i)0:t−1, x0:t−1)
∑

s̃t+1:t+a
p(xt:t+a|m, s(i)0:t−1, s̃t:t+a, x0:t−1)

(11)

w
(i)
t+a = w

(i)
t+a−1

∑

st

∑

m∈M

p(m|s(i)0:t−1, x0:t−1)
∑

s̃t+1:t+a

p(xt:t+a|m, s(i)0:t−1, s̃t:t+a, x0:t−1) (12)

extended the technique in [7] to incorporate and exploit the
information of thea posteriori pdf of m. In particular,
we aim at the approximation of the joint smoothing pdf
of the sequence of symbol vectors and a set of sequences
of channel matrices indexed by the elements ofM, i.e.,
p(s0:t+a, {Hm;0:t+a}m∈M |x0:t+a) where Hm;0:t+a, m =
1, . . . , |M|, is the sequence ofL×Nm dimensional channel
matrices obtained by assuming each possible channel order in
M. Using this notation, the desired pdf is decomposed as

p(s0:t+a, {Hm;0:t+a}m∈M |x0:t+a) ∝
∑

m p(xt:t+a|m, s0:t+a, Hm;0:t+a, x0:t−1)×

p(m|s0:t−1, Hm;0:t−1, x0:t−1)×

p({Hm;t:t+a}m∈M | {Hm;t−1}m∈M)×

p
(

s0:t−1, {Hm;0:t−1}m∈M |x0:t−1

)

(13)

where the term p(m|s0:t−1, Hm;0:t−1, x0:t−1)
can be computed recursively just like in (10), but whithout
the need of Kalman filtering (due to the conditioning on the
channel sequenceHm;0:t−1), i.e.,

p(m|s0:t−1, Hm;0:t−1, x0:t−1) ∝

p(m|s0:t−2, Hm;0:t−2, x0:t−2)p(xt−1|m, st−1, Hm;t−1)

(14)

where the likelihood function is Gaussian with mean
Hm;t−1st−1 an covariance matrixσ2

uIL.

Our goal is to take advantage of our ability to compute the
channel order posterior pdf (14) so as to design an efficient
importance function to draw both from the channel and the
data processes. We propose a general scheme of the form

q(s0:t+a, {Hm;0:t+a}m∈M |x0:t+a) =

q(st:t+a|s0:t−1, {Hm;0:t+a}m∈M , x0:t+a)

q
(

{Hm;t:t+a}m∈M |s0:t−1, {Hm;0:t−1}m∈M , x0:t+a

)

q(s0:t−1, {Hm;0:t−1}m∈M |x0:t+a) (15)

with q(st:t+a|s0:t−1, {Hm;0:t+a}m∈M , x0:t+a) (the data
importance function), and
q({Hm;t:t+a}m∈M |s0:t−1, {Hm;0:t−1}m∈M , x0:t+a)
(the channel importance function) to be specifically defined
later. The general form of the weight update equation given

(13) and (15) is

w
(i)
t+a ∝ w

(i)
t+a−1×

P

m p(xt:t+a|m,s0:t+a,Hm;0:t+a,x0:t−1)

q(st:t+a|s0:t−1,{Hm;0:t+a}m∈M
,x0:t+a)×

p(m|s0:t−1,Hm;0:t−1,x0:t−1)p({Hm;t:t+a}m∈M
|{Hm;t−1}m∈M)

q({Hm;t:t+a}m∈M
|s0:t−1,{Hm;0:t−1}m∈M

,x0:t+a)

(16)

Drawing from
(15) and applying (16) yields a new set of weighted particles,

Ω̃t+a =

{(

s
(i)
0:t+a,

{

H
(i)
m;0:t+a

}

m∈M

)

, w
(i)
t+a

}M

i=1

, and the

approximation of the corresponding posterior pdf

p(s0:t+a,H0:t+a|x1:t+a) ≈
∑M

i=1 w
(i)
t+a×

δ(s0:t+a − s
(i)
0:t+a)

∑

ℓ∈M δ(H0:t+a − H
(i)
ℓ;0:t+a). (17)

Integrating (17) overst+1:t+a and{Hm;t+1:t+a}m∈M, yields
an estimate of the desired joint smooting pdf,

p(s0:t,H0:t|x1:t+a) ≈
∫ ∫

∑M

i=1 w
(i)
t+aδ(s0:t+a − s

(i)
0:t+a)

×
∑

ℓ∈M δ(H0:t+a − H
(i)
ℓ;0:t+a)

=
∑M

i=1 w
(i)
t+aδ(s0:t − s

(i)
0:t)
∑

ℓ∈M δ(H0:t − H
(i)
ℓ;0:t)

(18)

Successively drawing from (15), updating the weights via
(16) and approximating the smoothing pdf by integration as
in (18) yields the new weighted

particle setΩt+a =

{(

s
(i)
0:t,
{

H
(i)
m;0:t

}

m∈M

)

, w
(i)
t+a

}M

i=1

.

Approximate marginal MAP symbol estimates are computed
as

ŝ
map
t = argmax

st

{

M
∑

i=1

δ(st − s
(i)
t )w

(i)
t+a

}

. (19)

Next, we elaborate the details of the importance functions
from which the symbols and the channel CIRs are drawn.

4.1. Channel sampling scheme

The form of function

q
(

{Hm;t:t+a}m∈M |s0:t−1, {Hm;0:t−1}m∈M , x0:t+d

)

(20)



in (15) implies that we need to draw samples of the channel
matricesH(i)

m;t:t+a for each one of the possible channel orders
m ∈ M.

For the sampling scheme to be sufficiently efficient (in
order to avoid the need of a very large number of particles),
we propose to run a bank of|M| adaptive channel estimators,
one for each channel order. In particular,H

(i)
m;t, m =

1, . . . , |M|, are drawn from Gaussian proposal pdf’s

H
(i)
m;t ∼ N

(

Hm;t|γĤ
(i)
m;t−1, σ

2
HI
)

, (21)

where the mean,γĤ
(i)
m;t−1 depends on the output of the

channel estimator for particlei and orderm, γ is the
coefficient of the AR channel model andσ2

H is a design
parameter. Then, for eachm ∈ M, subsequent samples,
H

(i)
m;t+1:t+a, are drawn using the AR model directly, i.e.,

H
(i)
m;t+k ∼ N(Hm;t+k|γH

(i)
m;t+k−1, σ

2
vI), k = 1, . . . , a.

(22)
Moreover, since samples with different channel orders are
statistically independent, we can write

q
(

{Hm;t:t+a}m∈M |s0:t−1, {Hm;0:t−1}m∈M , x0:t+a

)

=
∏

m∈M q (Hm;t:t+a|s0:t−1, Hm;0:t−1, x0:t+a) =
∏

m∈M N(Hm;t|γĤ
(i)
m;t−1, σ

2
HI)×

∏a

k=1 N(Hm;t+k|γH
(i)
m;t+k−1, σ

2
vI). (23)

As an adaptive channel estimator, we propose to use the
exponentially-weighted RLS algorithm [10]. Specifically,for
eachm ∈ M and eachi = 1, . . . , M , we need to compute

Ĥ
(i)
m;t = arg min

H

{

t
∑

k=0

λt−k ‖xk − Hsm;k‖
2

}

, (24)

where0 < λ < 1 is a forgetting factor, and the subindex
m in sm;k stands for the number of stacked symbol vectors,
namely,sm;k = [s⊤t−m+1 · · · s

⊤
t ]⊤ The sequence of problems

defined by (24) are recursively solved using the following
equations

R
(i)−1

m;0 ∝ INm (initialization) (25)

g
(i)
m;t =

λ−1R
(i)−1

m;t−1s
(i)
m;t

1 + λ−1s
(i)H

m;t R
(i)−1

m;t−1s
(i)
m;t

(26)

Ĥ
(i)H

m;t = Ĥ
(i)H

m;t−1 + g
(i)
m;t

(

xH
t − s

(i)H

m;t Ĥ
(i)H

m;t−1

)

(27)

R
(i)−1

m;t = λ−1
(

INm − g
(i)
m;ts

(i)H

m;t

)

R
(i)−1

m;t−1. (28)

4.2. Data sampling scheme

Following [7], we propose to use a bank of matrix linear
filters to obtain soft symbol estimates that enable the efficient

sampling of the symbol vectosst:t+a. Specifically,Nm × 1
dimensional vectors of symbol estimates are computed as

y
(i)
m;t = W

(i)H

m;t xt,m−1 (29)

for i = 1, . . . , M and m = 1, . . . , |M|. Note that, for
eachm ∈ M, the smoothing lag in the observations of (29),
xt,m−1, is selected asm − 1, which yields matrix filters,

W
(i)
m;t, with dimensionsNm × Lm. When the filters are

correctly built, the components of

y
(i)
m;t =

[

y
(i)
m;1,t, . . . , y

(i)
m;N,t, . . . , ym;N,t+m−1

]⊤

(30)

are estimates ofs1,t, . . . , sN,t, . . . , sN,t+m−1.
Each matrix filter is designed as alightweightversion of

the minimum mean square error (MMSE) detector, derived by
applying the inversion lemma [10] to avoid the computation
of inverse matrices. In particular, for eachm ∈ M, we
recursively approximate the inverse of the autocorrelation
matrix

R−1
m;t,x =

(

t
∑

n=0

αt−nxt,m−1x
H
t,m−1

)−1

(31)

as

R̂−1
m;0,x ∝ ILm (initialization) (32)

R̂−1
m;t,x = α−1

(

ILm − gm;tx
H
t,m−1

)

R̂−1
m;t−1,x (33)

where0 < α < 1 is a forgetting factor and

gm;t =
α−1R̂−1

m;t−1xt,m−1

1 + α−1xH
t,m−1R̂

−1
m;t−1xt,m−1

(34)

is a gain vector. The linear MMSE filters are then constructed
as

W
(i)
m;t = σ2

sR̂
−1
m;t,xH

(i)
m;t,m−1E, (35)

for i = 1, . . . , M andm = 1, . . . ,M, whereσ2
s is the symbol

power,E =

[

0N(m−1)×Nm

INm

]

, andH
(i)
m;t,m−1 is obtained

by stacking matricesH(i)
m;t:t+m−1 in the same way asHt,d

results from stackingHt:t+d in (4).
Since the maximum smoothing lag isa = |M| − 1,

corresponding to the lag needed for the maximum channel
order, for eachm ∈ M such thatm < |M| it becomes
necessary to apply a sequence of filters

W
(i)
m;t, . . . ,W

(i)
m;t+(|M|−m), (36)

where

W
(i)
m;t+k = σ2

sR̂
−1
m;t+k,xH

(i)
m;t+k,m−1E. (37)

As a result, for eachi = 1, . . . , M and eachm ∈ M we
obtain a sequence of estimatesy

(i)
m;1,t, . . . , y

(i)
m;N,t+a for the

symbolss1,t, . . . , sN,t+a.



Let y
(i)
m;j,t+k denote the linear estimate ofsj,t+k

assuming channel orderm. If the symbols are binary,
sj,t+k ∈ {±1} (extension to higher order constellations is

straightforward), we can assign probabilitiesq
(i)
+1|m,j,t+k

∝

exp{− 1
σ2

y
|ym;j,t+k − 1|2 (whereσ2

y is a design parameter)

and q
(i)
−1|m,j,t+k

= 1 − q
(i)
+1,j,t+k. These probabilities are

conditional (as indicated by the notation) on channel order
m. We combine them by using thea posterioripdf of the
channel order, to yield

q
(i)
+1,j,t+k =

∑

m∈M

q
(i)
+1|m,j,t+k

×

p(m|s0:t−1, Hm;0:t−1, x0:t−1)

q
(i)
−1,j,t+k =

∑

m∈M

q
(i)
−1|m,j,t+k

×

p(m|s0:t−1, Hm;0:t−1, x0:t−1). (38)

These probabilities enable us to define a discrete binary
probability distribution from which a samples(i)

j,t+k can be
drawn. Repeating this process for all symbols from timet to
timet+a we obtain the desired samples(i)

t:t+a. The evaluation
of q(st:t+a|s0:t−1, {Hm;0:t+a}m∈M , x0:t+a) is carried out

by adequately multiplying the probabilitiesq(i)
±1,j,t for j =

1, ..., N andt, ..., t + a.

5. SIMULATION RESULTS

Consider a simple system withN = 2 transmitting antennas,
L = 3 receiving antennas and CIR lengthm = 3. The
parameters of the channel AR process areγ = 1 − 10−5

andσ2
v = 10−4. Also assume a BPSK modulation format

and burst data transmission in blocks ofK = 300 symbol
vectors (i.e., 600 binary symbols overall), includingT = 30
pilot symbols from each transmitter.

Within this simulation setup, we have compared:

• The two complexity-constrained SMC equalizers
introduced in [7], that assume exact knowledge of the
channel order, namely, the ‘RLS-D-SIS’ (RLS-Delayed
sampling-SIS) and ‘LMS-D-SIS’ (Least Mean Squares
- Delayed sampling - SIS). They only differ in the
channel estimator they use (the RLS algorithm and the
LMS algorithm, respectively).

• Two ‘RLS-D-SIS’ algorithms that work considering an
incorrect channel order: one of them underestimating it
(m = 2) and the other overestimating it (m = 4).

• A genie-aided maximum likelihood sequence detector
(labeled ‘MLSD’) implemented using the Viterbi
algorithm with perfect knowledge of the time varying
CIR (including its order,m).
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Fig. 1. BER of the SMC equalizers, withM = 30 particles,
and the MLSD receiver for several values of the SNR (dB).
The true channel order ism = 3 and the maximum channel
order for the U-SIS is set as|M| = 4.

• The two algorithms presented in this work for unknown
channel order. The optimal procedure, described is
Section 3.2, is labeled ‘I-SIS’ (Integrated-order SIS)
while the complexity-constrained approach in Section
4 is labeled ‘U-SIS’ (Unknown channel order-SIS).

Figure 1 shows the bit error rate (BER) attained by the
SMC equalizers, withM = 30 particles, and the genie-
aided MLSD detector for several values of the signal-to-noise
ratio (SNR). It is observed that the performance of the I-SIS
and MLSD receivers is very similar (the BER curve presents
practically the same slope). On the other hand, the U-SIS
method appears suffers from some performance loss with
respect to the optimal method (in exchange for the complexity
reduction) and the RLS-D-SIS receiver with the true channel
order (m = 3), but it outperforms the two RLS-D-SIS
equalizers with mismatched order. Notice, in particular,
the very poor behavior of the RLS-D-SIS technique with
underestimatedm.

For eacht, the U-SIS algorithm computes thea posteriori
pdf of the random channel orderm ∈ M. Figure 2 (left)
depicts the evolution of this pdf fort = 31 : 300, i.e.,
the duration of a data frame (notice that no channel order
estimation is carried out for0 ≤ t ≤ 30). It can be seen
that the probability of the actual channel order,m = 3,
quickly converges to a value very close to 1, while the other
probabilities practically vanish. The results are the average of
50 independent simulations.

In order to check the robustness of the U-SIS technique,
we have repeated the same experiment for a channel with
actual orderm = 5 and maximum order|M| = 8. Figure
2 (right) shows the results. It can be seen that the proposed
algorithm assigns a much higher probability (again, close to
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Fig. 2. Left: Time evolution of thea posterioripdf of the different channel orders, as computed by the U-SISmethod. The
actual channel order ism = 3, the maximum possible order is|M| = 4 and the number of particles isM = 30. Right: Time
evolution of thea posterioripdf of the different channel orders, as computed by the U-SISmethod. The actual channel order is
m = 5, the maximum possible order is|M| = 8 and the number of particles isM = 30.

1) to the true channel order, while the other possible values
receive very small probabilities (practically negligiblefor
m < 5).

6. CONCLUSIONS

In this article, we have proposed the application of the SMC
methodology to build quasi-MAP adaptive equalizers for
MIMO systems that can handle the uncertainty in the channel
order. In particular, we have derived both optimal (I-SIS) and
complexity-constrained (U-SIS) SMC algorithms for joint
data detection, channel order and CIR estimation in frequency
and time-selective MIMO channels. The complexity of the
optimal I-SIS equalizer grows exponentially with the channel
dimensions, while U-SIS is constrained to a polynomial
computational load. Besides the analytical derivation of the
algorithms, we have shown computer simulation results that
illustrate the performance of the proposed techniques.

Compared to existing methods for MIMO channel order
estimation, the proposed SMC-based techniques:

• are designed for joint data detection and CIR estimation
(including the order);

• perform sequential (adaptive) processing, rather than
batch mode computations like the existing CME [1] and
subspace-based [3] methods;

• produce soft order information (posterior probabilities)
that can be exploited in different ways, instead of just
choosing one particular order as in [1,3]; and

• has been shown to work with relatively low and
medium SNRs (below 10 dB), while the subspace

technique in [3] is very sensitive to noise (according to
the plots in that paper, accurate order detection is only
achieved in general when SNR¿20 dB) and the CME-
based algorithm of [1] attains only a relatively modest
percentage of correct order detection (which is never
higher than 85% for the range 10¡SNR¡20 dB and a
simple, order 2, channel).
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