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Abstract— Target tracking in a wireless sensor network (WSN)
has become a relatively standard problem. The WSN typically
consists of a collection of sensor nodes, which acquire physical
data related to the target dynamics, and a fusion center (FC)
where the available data are processed together to sequentially
estimate the target state (its instantaneous location and velocity).
Very often, tracking algorithms are designed under the assump-
tion that the network is synchronous, i.e., that the local clocks
of the sensor nodes and the FC are perfectly aligned or, at
least, that their offsets are known. In this paper, we consider
an asynchronous WSN, in which the local clocks of the sensors
are misaligned and the corresponding offsets are unknown, and
aim at designing recursive algorithms for optimal (Bayesian)
tracking. In particular, we propose sequential Monte Carlo
(SMC) techniques that enable the approximation of the joint
posterior probability distribution of the target state and the set
of local clock offsets by means of a discrete probability measure
with a random support. From this approximation, estimates of
the target position and velocity, as well as of the clock offsets,
can be readily derived. We illustrate the validity of the proposed
approach and assess the performance of the resulting algorithms
by means of computer simulations.

I. INTRODUCTION

Wireless sensor networks (WSN) provide us with many
interesting opportunities and challenges for sensing and mon-
itoring. Due to recent advances in micro-fabrication, small
and cheap sensors can be deployed and provide us with large
amounts of physical data related to objects of interest in the
environment surrounding them. In particular, many important
applications of WSNs, both civilian and military, include the
online tracking of randomly maneuvering targets.

A. Motivation

Wireless micro-sensors are transducers which “measure”
a physical phenomenon and convert it into an information-
bearing electrical signal through sampling, filtering and cali-
bration. The latter, as well as other important steps of signal
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processing, depend on the internal clocks of the sensors. In the
application of WSNs for target tracking, it is often assumed
that the clocks of the sensors and the fusion center (FC) are
synchronous, i.e., that all sensors sample the phenomenon of
interest at the same instants or, alternatively, that the sampling
times are possibly different but perfectly known at the FC.
However, a misalignment in the clocks of the sensors and the
FC due to the inherent drift in the clock frequencies occurs in
practice [1]. Estimating and compensating the timing offsets
at the sensors using time synchronization protocols results in
a significant increase of the communication overhead in the
WSN and, as a consequence, in an undesired reduction of
the life of all battery-supported nodes [2]. In this paper, we
tackle the problem of tracking a target when the sensors are
asynchronous and their offsets are unknown.

B. Brief Literature Survey

The issue of handling the asynchronous activity of sensors
has been addressed in [3], in the context of a multisensor-
multitarget bias estimation problem, but assuming that all
timing offsets are known. Similarly, in [4] sensor registration
is performed using Kalman filtering for asynchronous sensors,
but the misalignments of the sensor clocks are assumed known,
too. In [5], the authors consider a localization system with
asynchronous sensors and an object that periodically transmits
a known signal. The inter-arrival time between the received
signals is approximated and modeled as being statistically
independent of the clock offsets, in order to enable localization
using standard maximum-likelihood estimation (MLE) tech-
niques.

In this paper, we propose to use the sequential Monte
Carlo (SMC) methodology [6] to jointly estimate the sensor
offsets and the target trajectory and velocity. The problem is
formally modeled as the joint Bayesian estimation of a set
of static parameters and the time-varying state of a discrete-
time random dynamical system. The SMC approach consists
in approximating the posterior probability distribution of the
random signals of interest using a discrete probability measure
with random support, which enables the straightforward com-



putation of estimates. This is not a simple task for our problem,
though, since it is hard to guarantee convergence (to optimal
solutions) of conventional SMC algorithms when static and
dynamic random magnitudes must be handled together. The
joint (static) parameter and (dynamic) state estimation problem
has been previously addressed in [7], [8], [9], [10], [11]. In
[7], an artificial evolution of the static parameters is proposed.
In [8], the evolution of the parameters using kernel methods
is described. A sampling scheme for fixed parameters that
imposes restrictive assumptions on the probabilistic model is
proposed in [9], while in [10] point-optimization methods are
proposed. Finally, in [11], “density assisted” methods, which
approximate the posterior distribution of static parameters
using a model probability density function (pdf), are discussed.
In this paper, we propose two novel techniques, based on the
general methodologies of [11] and [8].

C. Organization of Paper

In Section II, we present the signal model and describe
the estimation problem that we tackle. The proposed SMC
algorithms are introduced in Section III. Computer simulation
results are shown in Section IV and, finally, Section V is
devoted to a brief discussion of the obtained results and some
concluding remarks.

II. PROBLEM STATEMENT

We aim at recursively estimating the time-varying position
and velocity of a target tracking that moves along a 2-
dimensional region. The state of the target at continuous
time t is x(t) = [z1(t),z2(t),21(¢),22(t)]T € R*, where
[z1(t),z2(t)]T € R? denotes the target location, #;(t) is the
time derivative of x;(¢) and, therefore, [i1(t),d2(t)]" € R?
is the target velocity vector at time ¢.

If the system is converted into discrete-time by sampling
every T' seconds (s), we obtain the dynamic state space (DSS)
model,

Ty = ArTp_1 +ug, keN, (1

where A is a 4 X 4 transition matrix,
. .4 T
T = [T1 g, T1 ks T2 ks T2 ] = x(ET)

is the target state at time kT (ie., [z1, T2k =
[21(kT), 2o(kT)]" is the sampled position and [#1 1, @2 1] =
[#1(kT), 22 (kT)] is the sampled velocity, both at time k£T") and
us ~ N (0, Cr) is zero-mean Gaussian noise with covariance
matrix C7. Both the transition matrix, A7, and the noise
covariance matrix, Cp, are parameterized by 7', specifically
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Figure 1 depicts the timing diagram for the observations
collected by two sensors, whose clocks are misaligned with
the FC. Specifically, the knots in the line labeled “FC” denote
the time instants at which the FC collects the data, while the

Fig. 1. Timing diagram of the clocks of two sensors and the FC.

knots in the lines labeled “S1” and “S2” indicate the sampling
instants for sensors 1 and 2, respectively. We observe that the
sensors have fixed, but random and unknown, offsets 7, 7o >
0, 71 # T2, hence they do not sample the function of the target
trajectory in the same points.

In most target tracking applications, perfect timing is as-
sumed (i.e., 4 = 7o = 0), which is hard to achieve in a
practical situation. In this paper, we study the effect of such
offsets on the tracking problem. Let us denote time intervals
as tp = [(k — 1)T,kT), k € N. The set of observations that
the FC receives from the n-th sensor during interval t; is

_ T
yn,t;c - [yn,a,tk7yn,d,tkayn,v,tk] 5 Where

Yn.ate tan ™" (M) + Vna,ty (2a)
L3, tp+1n — Sn,2
Yn.d,ty \/(ml,twrn = 8n,1)% + (¥3,4447, — Sn,2)?
+Un,d,ty (2b)
Ynoty = \/(962,tk+7")2 + (Tatp47, )% + Unyd,-  (20)

The angle, distance and velocity observations given by (2a)
(2b) and (2c) , respectively, depend on the sensor offset, 7,,,
the target state at time (k — 1)7 + 7,,, denoted as

Ttytr, = Ar, T—1 + Uy yr,,s

where w4, 4., ~ N(0,C. ), and the sensor positions,
{Sn,1,8n,2}. The measurement noise processes at the n-th
sensor are denoted as Un q.t,, Un,dt, and vn .4 for an-
gle, distance and velocity, respectively, and their pdf’s are
known. The complete set of observations during tj is y:, =
{¥1,t5+---» YN, 1, }» Wwhere Ny is the number of sensors in the
WSN. Our objective is to estimate the sequence of target states
zo.; = {®o, ..., xr} and clock offsets 7.n, = {71,...,7n.}
using the measurements yy,.t, = {¥t,---,Yer }-

III. ALGORITHMS

All the statistical information needed to optimally solve the
proposed estimation problem is contained in the a posteriori
pdf p(xo:.k, T1:N. |Yt,:t, )- Since the observations (2a) and (2b)
are nonlinear, there is no feasible (optimal) analytical solution,
and we propose to resort to SMC methodology [6]. SMC
methods aim at approximating the a posteriori pdf by means




of a discrete random measure that consists of a set of weighted
samples in the state space, usually termed particles [6]. In the
problem at hand, the approximation with M particles takes
the form

M
PmMm (wo:kv Tl:Ns |Yt1:tk) = Z w](gm)é(:nok - w(()’”]z)) X
m=1
X8(T1in, — TN )s 3)
where w™ is the importance weight associated to the sample

(2™ tm)

To.p s TILN. ) and 0(-) denotes the Dirac delta function. A
SMC method is a procedure to recursively update the random
measure approximation (3) when a new set of observations,
Yy 18 received. It is difficult, in general, to guarantee the
convergence of conventional SMC methods when there exist
random (unknown) fixed parameters, because the dynamic sys-
tem becomes non-ergodic [12]. In the sequel, we propose two
algorithms that specifically take into account the fixed offsets,
T1:N,, based on the density-assisted particle filtering (DAPF)
methodology [11] and the sequential kernel approximation
proposed by Liu and West [8].

A. Density Assisted Particle Filtering

The proposed SMC algorithm for the joint estimation of
the target state and the sensor timing offsets is based upon the
parametric approximation of the marginal posterior pdf of the
n-th offset at time k& by means of a beta pdf with properly cho-
sen parameters', i.e., p(7, |yt ) & B(Tw; T ks Gn k), Which
is updated, together with the importance weights, as new
observations are collected. The algorithm steps are outlined
below.

(i) Intialization (k = 0): Target-state samples are drawn from
the a priori pdf p(x). Offset samples are drawn from the
single beta pdf B(7,, 1,1), i.e., we assume that, a priori,
() = B(Tn, 1,1) for all n.

At time k, and given {z{}) ,w!™ }M
recursive steps are taken.

m—1, the following

(i) Particle propagation: For each n = {1,2,--- Ny}, timing
offset samples are drawn from the beta-approximation of
their marginal posterior pdf’s at time k — 1,

T’I(Lm) ~ B(Ty; Tn,k—1, ¢n,k—1)-

For each sample m € {1,2,--- M}, the offsets Tl(T;LV) are

sorted in the ascending order, i.e., we find a sequence

,in, of distinct indices such that iy, € {1,..., Ny}

m o < Ti(;':). State samples
(m)

(m)
tr +T7”N‘9

i
for all k& and T(m) <7,

2™

thrT(rn)? ceey

are drawn using the (adequately parameterized) Markov
state equation (1), and we denote the resulting set of
lB . _ (r=a)"™ l(b T)¢ h — 7711_
(Tvﬂ'vd)) B(T" qb)(b a)7r+q> 1 where ﬂ ) [ s (

5)?~1ds is the beta function, and a and b are the lower and upper bounds
of 7.

(iii)

(iv)

v)

particles as th = {a' 7m N )1 As an example,

assume N, = 2 and the offset samples 7{™ < 7.
draw the state samples at the time instants (k—1)T+7;

t+<"”’

We
(m)

and (k — 1)T + 7, ™) as follows

(m) (m) (m)

x, (™) A rmTp_1 +uy, g

RONNES Afé"”—ﬁm’wtﬁ my T U2
where ugkmi ~ N(0,C () and uil"% ~
N(0,C ) om).

Weight update Since the noise pdf’s in (1), (2a), (2b)
and (2c) are assumed known, the likelihood function,
(¥t | X,E;n)), can be easily evaluated and the importance
weights are recursively updated as

D™ = wi_1p(ye xi™), (4)

with

Ng
H yn’a’tk |Xz(5:1))p(yn,s,tk |Xz(&:n))
=1

Pyelxir™)

S

<P Yno | X0T)-

The welghts in (4) need to be normalized, w,g ™=

~(m) / Z ~( )

= 1
Update of the posterior pdf’s of the sensor offsets:
Using the set of weighted sensor offset samples,

w,(Cm), rim) , the sample mean and variance of 7,

zw;m>75m>
Ui,k Z w(m)

m

. m=1
are obtained,

Nn,k

_Nnk) .

Then, the parameters of the beta-approximation to the
posterior pdf of 7, T, 1, §n.k, can be calculated as

n'l_ n
_— uw{ﬂﬂzl%w%
Onk

n’
Tk
¢n,k =

(1 = pink) 5)

nk

Estimation of parameter and states : It is straightforward
to approximate any moment of the posterior distribution
of &y, 4y, and 71., using the discrete probability mea-
sure given by the weighted set of particles {XE’:), w,im)}.
In particular, the target position and velocity at time
(k—1)T + 1, can be estimated as

Z@

which is an approximation of the minimum mean square
error (MMSE) estimate of @, 1, given y, ., . Similarly,
n,k 1s the (approximate) MMSE estimate of the sensor
offset 7,,.

Ltyp+r, = mtk—&-rn



Fig. 2. Series of operations during each time interval

(vi) Resample and Move: Occasional resampling steps are
needed in order to avoid the well-known phenomenon of
weight degeneracy [6]. In our simulations, we perform
a multinomial resampling step for every k. Following
resampling of the sample {XE;") M_ |, we obtain a new

stream of particles {5<§f“>}%:1. For each of this stream

of particles, we first find the state particle corresponding
to the maximum timing offset and then propagate the

particle to time kT, i.e.,

(m) _ (m)
X, | = Ak}T*Ti(m‘)th+Tl(7n) +u 7,
Ng Ng

where u,(cm) is drawn from N'(0,C, . ).
iNg

Figure 2 is a graphical representation of the recursive steps
of the proposed DAPF algorithm, where each cloud represents
the state and sensor offset samples.

B. Liu and West algorithm (LW)

In the joint static-parameter and dynamic-state algorithm
proposed in [8], a Gaussian mixture density is used for an
artificial evolution of the fixed parameters. Clearly we cannot
use a Gaussian mixture density for an artificial evolution of
the sensor offset parameter 7,, because it is bounded, i.e.,
0 < 7, < T. Therefore, we propose the following truncated
Gaussian mixture density for the evolution of 7,,

P(rnitt | Vi) = 3wl TN o1) (Toirrs 7oy h202 1)
k
(6)

where TN (o, 7(+) is the normal distribution truncated outside

of the interval (0,7"), with mean %T(:,Z)

k subscript in Tfln;) is due to the artificial time evolution (not

to the model dyilamics) and pp 5 and O’?hk are the sample

mean and variance of 7, at time k. The choices ﬁ(f;) =

and variance h?0? , , the

a’rgz) + (1 —a)pn k and h? = 1 — a? ensure that the mixture

density preserves the original sample mean and variance (this
technique is termed “shrinkage” in [8]).
We now summarize the main steps of the algorithm. At time
k, we have available {z(™ 7" w™M_ and receive
4 0:k—1° "1:Ng» Yk—1Jm=1
the new observation yy, .

(i) Estimation of prior estimates: For each n = 1--- N
compute T, . m as

(m)

~(m) o m
xr = Ar,‘]")mk—l

titry™
(i) Sampling of sensor offset parameters: Consider a
discrete random variable V' which takes values on
the set {1,..., M} with probabilities proportional to

p(ytk|{ttk+7’1(_n;\? ,7-1(?7;,)5). Draw M times from V and

denote this set of samples as {V(1), ... V()} Corre-
sponding to each of these elements, draw ﬂSJ ) from the
V(9)-th kernel of the truncated gaussian mixture in (6).
Sampling target state parameters: For each m =
1,...,M and each n = 1,...,Ng, compute a state
particle using the Markov prior (1), as described in step
(i) of the DAPF algorithm, i.e., compute the aggregated
particles ngm), m=1,..., M.

(iii)

(iv) Evaluation of the weights:
(m)
x
oy P
w " x — @)
pyele” "))
k tk+71(:‘j\](:l)>

The likelihood factors are calculated as described in step
(iii) of the DAPF algorithm. The estimation, resampling
and move steps are also performed in the same way as
for the latter algorithm.

IV. SIMULATIONS

Consider a network with Ny = 3 sensors and observation
period 7' = 1 s. The initial pdf of the target state is
p(xo) = N(py, Kop), with gy = [0;0.5;0.0;0.05] T and
Ko = diag{l, 1, 0.01, 0.01}. The measurement noise
processes are Gaussian, with zero-mean and standard devia-
tions o, = 0.01, 0, = 0.5 and o, = 0.1 for angle, distance
and velocity, respectively. We have set the number of particles
to M = 3000 for all SMC algorithms.

We study the proposed methods for the scenario when
the three sensors have different offsets, 71 = 0.27, 7 =
0.5T, and 73 = 0.87. The nth sensor timing offset particles
are all initially drawn from §(7,,1,1).

As an illustrative example, Fig 3 shows the estimation of
a complete target trajectory for a single simulation run, using
DAPF and LW algorithms. For comparison, we also depict the
trajectory estimate obtained with a standard SMC algorithm
with perfect knowledge of the timing offsets (labeled “SPF-
Knw”). It can be seen that all three algorithms can track the
target along a highly nonlinear trajectory. From this single
trial, the LW algorithm seems to be the weakest technique.

In order to statistically asses the performance of the algo-
rithms, we have considered the root mean square error (RMSE)
as a figure of merit. In particular, for L = 100 independent



Fig. 3. Trajectory and its estimates using the DAPF algorithm

simulation runs we have evaluated

1 L
7> kit = Ta)?

RMSE,,, =
=1
| L

RMSE,,, = I (Ziga — Tip)?
=1
1L

RMSE;, , 7 (@i — J'Jk,z)27
=1

where 7,,;, x; 1, and &;; are the nth offset, the ith state
dynamic variable (¢ € {1,2}) at time kT and its derivative,
respectively, all of them for the [th simulation run. Their
corresponding estimates are denoted as 7, ,; (at time kT,
2k, and ?‘Ti,k,l, respectively.

Figure 4(a) shows the RMSEs obtained for the estimation of
the three offsets, 71, 72, and 73, using the DAPF algorithm. The
corresponding RMSEs resulting from the application of the
LW technique are shown in Figure 4(b). The RMSEs obtained
with the DAPF algorithm are similar for the three sensors,
and clearly smaller than the RMSEs obtained with the LW
method. This is a consequence of the misconvergence of the
LW algorithm for some scenarios.

Figure 5 plots the RMSEs obtained for the estimation of the
targets dynamics for the DAPF and SMC-Knw algorithms. We
have found that the DAPF technique is consistently better than
the conventional SMC-Knw algorithm, with known offsets, for
this particular scenario. We conjecture that this is due to the
smoothing effect of using a set of different offsets for each
particle, which means that we assess the quality of the particle
(through the computation of the corresponding likelihoods and
weights) using a longer segment of the target state realization.

Finally, we show an example of how the estimation of
the offsets with the DAPF algorithm evolves with time in
a single simulation trial. In particular, Figure 6 shows the
marginal posteriors of the sensor offsets, approximated by
beta distributions, at time instants ¢ = 25,50,75 and 100

(a) DAPF

(b) LW

Fig. 4. The RMSE of 71.3 with the DAPF and LW algorithm

Fig. 5. The RMSE of «; with the DAPF and SMC-Knw algorithm. Upper
left: RMSE of 21 . Upper right: RMSE of x5 . Lower left: RMSE of @1 .
Lower right: RMSE of %3 g.



Fig. 6. The evolution of the beta distribution for each of the sensor offsets
at time instants t=25,50,75,100s

Fig. 7. An estimate of the sensor offsets. The dashed horizontal lines are
the true sensor offsets

s. It can be seen how the modes of the beta density get
closer to the true offset values and then become narrower with
time. Alternatively, Figure 7 plots the time evolution of the
offset estimators (7,,, n = 1,2,3). We can see how the three
estimators get close to the true values.

V. CONCLUSION

In this paper we have addressed the problem of target track-
ing in an asynchronous sensor network. We have proposed
sequential Monte Carlo algorithms for the joint estimation of
the sensor offsets and target state dynamics. In the DAPF
algorithm, the marginal distributions of the sensors offsets
are approximated by a generalized beta distribution. Using
these distributions, offset samples are generated at each time
interval, which are, in turn, used to propagate the target state

samples. In the LW algorithm , the marginal distributions

of the sensors offsets are approximated by a mixture of
truncated Gaussian kernels. Through computer simulations

we have compared these two methods and observed that the
DAPF algorithm has a clearly better performance than the LW
algorithm for the joint tracking of sensor offsets and target
dynamics.

Some potential limitations of these techniques should also
be remarked, though. It has been observed that, in a few
cases, due to the apparent non-linearity of the offset parameters
through the covariance matrix of the process noise in the
DSS model, the marginal posterior of the sensor offsets is
multimodal and the DAPF method can get stuck at local
maxima. Good initialization or informative prior knowledge of
the sensor offsets may be helpful. Also when very few offset
samples have non-negligible weights and are concentrated
in a particular region, approximation of the posterior using
parametric densities does not seem to contribute much to
sample diversity. This may be particularly harmful in scenarios
where the filter gets stuck at a local maxima. A potential
problem with the LW algorithm is that when the sensor
offset estimates or target dynamic estimates are poor, the
denominator in (7) may get close to zero and cause the particle
filter to diverge.
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