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ABSTRACT

We introduce new sequential Monte Carlo (SMC) techniques
for the maximum a posteriori (MAP) equalization of multiple
input multiple output (MIMO) wireless channels. SMC methods
have been recently proposed to tackle the MIMO equalization
problem because of their potential to provide asymptotically optimal
performance in terms of bit error rate and their suitability for
implementation using parallel hardware. However, the existing
algorithms are limited by their high computational complexity
relative to the dimensions of the MIMO channel. The SMC
equalizers in this paper overcome this drawback by means of a new
sampling scheme that constrains the growth of the computational
load to be of quadratic order with respect to the channel dimensions.
We apply the new algorithms to the equalization of multi-antenna
and multiuser (MU) ultra-wide band (UWB) communication
systems and provide computer simulation results to illustrate their
performance in both scenarios.

1. INTRODUCTION

Multiple input multiple output (MIMO) channels appear in many
relevant communication scenarios, such as multiuser [1] and multi-
antenna [2] systems. Unfortunately, practical MIMO channel
equalization poses several problems. In particular, the computational
complexity of maximum a posteriori (MAP) data detection grows
exponentially with the number of inputs and the length of the channel
impulse response (CIR).

Recently, the application of the sequential Monte Carlo (SMC)
methodology [3] has been proposed to build quasi-MAP MIMO
equalizers with polynomial complexity and amenable to parallel
implementation [4, 5, 6]. SMC techniques, also known as particle
filtering (PF) algorithms, are based on approximating probability
distributions of interest using weighted samples [3], and they are
computationally intensive in absolute terms (because usually many
samples have to be generated in order to obtain some prescribed
level of performance). However, they are also inherently suitable for
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implementation using parallel hardware and, therefore, hold promise
of very high processing speeds. Unfortunately, even the techniques
in [5, 6] can be prohibitive for certain classes of MIMO systems
because they involve heavy computational tasks (e.g., banks of
Kalman filters and successive matrix inversions) with a complexity
that grows with L3, where L is the number of outputs of the MIMO
channel.

In this work, we propose two new SMC equalizers for nearly-
MAP equalization of MIMO systems that can be implemented with
quadratic complexity with respect to the channel dimensions. They
are specially suitable for large systems or when there exist stringent
real-time requirements (e.g., online equalization). Compared with
the methods in [5, 6], the new equalizers substitute the banks of
Kalman filters by less complex parallel adaptive channel estimation
algorithms that avoid matrix inversions altogether.

The remaining of the paper is organized as follows. In the
next section, a general signal model for a frequency-selective
MIMO channel is described. This model can be used in a
straightforward manner to represent multi-antenna transmission
systems and, furthermore, we show that it also comprises a class of
multiuser (MU) ultra-wideband (UWB) communication systems [7]
as a particular case. In section 3, the standard application of SMC
methods to MIMO equalization is discussed. The fundamental ideas
behind the proposed SMC equalizers are introduced in Section 4.
Then, in Section 5, we apply the new algorithms to the equalization
of multi-antenna and MU-UWB communication systems, and
provide illustrative computer simulation results. Finally, brief
concluding remarks are made in Section 6.

2. SIGNAL MODEL

2.1. Discrete-time model of a general MIMO system

The discrete-time equivalent model of a MIMO transmission system
with frequency-selective and time-varying CIR can be written as [5]

xt =

m−1
X

i=0

Hi,tbt−i + ut, t ∈ N, (1)

where {Hi,t}
m−1
i=0 is the L × N -dimensional CIR, of length m, bt

is the N × 1 vector containing the symbols transmitted at time t,
ut ∼ N(ut|0, σ2

uIL) is an additive white Gaussian noise (AWGN)
process with zero mean and covariance matrix σ2

uIL (IL is the L×L



identity matrix) and xt is the L × 1 vector of observations. The
symbols are modeled as discrete uniform random variables (r.v.’s) in
the alphabet B, hence bt ∼ U(BN ). It is often convenient to use a
more compact representation of (1), namely

xt = Htbt + ut, (2)

where Ht = [Hm−1,t · · ·H0,t] is the L × Nm overall channel
matrix at time t and bt = [b>

t−m+1 · · ·b
>
t ]> is an Nm × 1 vector

that contains all the symbols involved in the the t-th observation.
It is straightforward to verify that either (1) or (2) can be used to
model a multi-antenna communication system with N transmitters,
L receivers and CIR of length m. Specifically, the sequence of
coefficients {hr,c

i,t }
m−1
i=0 , where hr,c

i,t is the element at the r-th row
and c-th column of Hi,t, is the discrete-time equivalent channel, at
time t, between the transmit antenna c and the receive antenna r.

The channel variation can be modeled with an autoregressive
(AR) process [8], that we assume of first order for simplicity (higher
orders are easily handled, except for the notational burden), namely

Ht = γHt−1 + Vt, (3)

where 1 − ε < γ < 1 (for small ε > 0) and Vt is a matrix
of independent and identically distributed (i.i.d.) Gaussian random
variables with zero mean and variance σ2

v .
Because of the channel frequency-selectivity, some type of

smoothing is needed for reliable data detection. The design of
smoothing detectors becomes simpler if we stack together several
successive observation vectors, to yield the model

xt,a = Ht,abt,a + ut,a, (4)

where a ≥ 1 is the smoothing lag, xt,a = [x>
t · · ·x>

t+a]>

is the L(a + 1) × 1 vector of stacked observations, bt,a =
[b>

t−m+1 · · ·b
>
t+a]> has dimensions N(m + a) × 1, ut,a =

[u>
t · · ·u>

t+a]> and

Ht,a =

2
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Ht(m − 1) 0 · · · 0
Ht(m − 2) Ht+1(m − 1) · · · 0

... Ht+1(m − 2)
. . .

...

Ht(0)
...

. . . Ht+d(m − 1)
... Ht+1(0)

. . . Ht+d(m − 2)
...

...
. . .

...
0 0 · · · Ht+d(0)
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>

(5)
is the L(a + 1) × N(m + a) stacked channel matrix.

2.2. MIMO model of a MU-UWB transmission system

The discrete-time MIMO model (2) can also be used to represent the
signal observed by the receiver in a UWB communication system
with time-hopping multiple access. In particular, let us consider the
uplink of a system with U users. All of them employ the same pulse
waveform, g(t), with support in the interval [0, Tg), for impulse-
radio transmission. The distinct code (i.e., the sequence of time
hops) assigned to the n-th user is denoted as {cn,i}

Nf−1

i=0 , where
Nf is the code length. The k-th symbol of the n-th user, bn,k, is
transmitted over Nf frames of duration Tf >> Tg , in such a way
that the symbol period is Tb = NfTf and, during the i-th frame,

the user transmits the pulse g(t − kTb − iTf − cn,iTg), where
i ∈ {0, ..., Nf − 1}, cn,i ∈ {0, ..., Nc − 1} and Nc =

Tf

Tg
.

The signal transmitted by the n-th user,

xn(t) =
X

k∈Z

bu,k

Nf−1
X

i=0

g(t − kTb − iTf − cn,iTg), (6)

t ∈ R, propagates over a frequency-selective multipath channel with
impulse response

hn(t) =

P−1
X

j=0

βn,jδ(t − jTg), (7)

where δ(·) is the Dirac delta function. Because of asynchronous
transmission, the aggregate received signal has the form

x(t) =
X

k∈Z

U
X

n=1

bn,k

Nf−1
X

i=0

P−1
X

j=0

βn,j ×

×g(t − kTb − iTf − (cn,i + j)Tg − τn) + u(t),(8)

where τn > 0 is the symbol delay of the n-th user and u(t) is an
AWGN continuous-time process. See [7] for details on the modeling
of UWB signals.

The receiver front-end consists of a bank of U frame-rate
correlators, hence there are UNf signal samples available per
symbol period, Tb. The output of the n-th correlator for the i-th
frame of the k-th symbol can be written as

xn,i(k) =
X

m∈Z

U
X

l=1

bl,m

Nf−1
X

r=0

P−1
X

j=0

βl,jI
m,l,r,j
n,i (k) + un,i(k), (9)

where Im,l,r,j
n,i (k) is the integral

Z Tg

0

g(θ)g(θ+(k−m)Tb +(i−r)Tf +(cn,i−cl,r−j)Tg−τl)dθ,

(10)
and the terms of the form un,i(k) are i.i.d. Gaussian r.v.’s with zero
mean and variance σ2

u.
The amount of inter-symbol interference (ISI) in the system

depends on the parameter P (the common length of the CIR for
all users) and the maximum symbol delay. It is often realistic to
assume the PTg +maxl∈{1,...,U}{τl} < Tb

2
, which implies that the

symbols transmitted at time k interfere only with those transmitted
at time k + 1. Under this assumption, we can write

xn,i(k) =
U
X

l=1

»

bl,k−1q
n,i+

Nf
2

(l, k − 1) + bl,kfu,i(l, k)

–

+un,i(k), i = 0, ...,
Nf

2
− 1, (11)

xn,i =
U
X

l=1

bl,kfu,i(l, k) + un,i(k), i =
Nf

2
, ..., Nf − 1,

(12)

where

q
n,i+

Nf
2

(l, k − 1) =

Nf−1
X

r=i+
Nf
2

P−1
X

j=0

βl,jI
k−1,r,l,j
n,i (k), (13)

fn,i(l, k) =

i
X

r=0

P−1
X

j=0

βl,jI
k,r,l,j
n,i (k). (14)



Finally, in order to obtain a representation of the observations
of the form (2), let us define the U × 1 vectors xi(k) :=
[x1,i(k), . . . , xU,i(k)]> and bk = [b1,k, . . . , bU,k]>, the NfU × 1
vector xk := [x>

0 (k), . . . ,x>
Nf−1(k)]>, and the U × U composite-

channel matrices Q
i+

Nf
2

(k − 1) and Fi(k), given elemen-wise as

[Q
i+

Nf
2

(k − 1)]r,c := q
r,i+

Nf
2

(c, k − 1), [Fi(k)]r,c := fr,i(c, k),

where r, c ∈ {1, ..., U} are row and column indices. We can write

xk = Hkbk + uk, (15)

where

Hk :=

2
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QNf
2

(k − 1) F0(k)

...
...

QNf−1(k − 1) FNf
2

−1
(k)

0 FNf
2

(k)

...
...

0 FNf−1(k)
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, bk :=

»

bk−1

bk

–

(16)
and uk = [u1,0(k), . . . , u1,Nf−1(k), . . . , uU,Nf−1(k)]>.

3. STANDARD SMC EQUALIZATION OF MIMO
CHANNELS

In this section we summarize the standard approach to MIMO
channel equalization using SMC algorithms, with special attention
to its computational complexity. Similar material can be found in
[9, 10, 3, 5]. We assume the general model (2) for our derivations
(application to the MU-UWB model (15) is straightforward).

3.1. Sequential Importance Sampling

Most particle filtering methods rely upon the principle of importance
sampling (IS) [3] for building an empirical approximation of a
desired pdf1, say p(x), by drawing samples from a different
distribution, known as importance function or proposal pdf and
denoted π(x). These samples are then assigned appropriate
normalized importance weights, i.e.,

x(i) ∼ π(x) and w(i) ∝
p(x(i))

π(x(i))
,

where
PM

i=1 w(i) = 1, M being the number of particles. In
order to detect the transmitted symbols, it is natural to aim at
the approximation of the a posteriori marginal pdf of the data,
p(b0:t|x0:t), which contains all relevant statistical information for
the optimal (Bayesian) estimation of b0:t. In turn, an importance
function of the form π(b0:t|x0:t) is needed.

One of the most appealing features of the particle filtering
approach is its potential for online processing. Indeed, the IS
principle can be sequentially applied by exploiting the recursive
decomposition of the posterior distribution

p(b0:t|x0:t) ∝ p(xt|b0:t,x0:t−1)p(b0:t−1|x0:t−1), (17)

which is easily derived by taking into account the a priori uniform
distribution of the symbols, and an adequate importance function

1We note that any probability mass function can be expressed as a density
using sums of Dirac delta functions.

that can be factored as

π(b0:t|x0:t) = π(bt|b0:t−1,x0:t)π(b0:t−1|x0:t−1). (18)

The recursive algorithm that combines the IS principle and
decompositions (17) and (18) to build a discrete random measure
that approximates the posterior pdf is called sequential importance

sampling (SIS) [3]. Let Ωt =
n

b
(i)
0:t, w

(i)
t

oM

i=1
denote the discrete

measure at time t, where M is the number of particles. The desired
pdf is approximated as

p̂(b0:t|x0:t) =
M
X

i=1

δi(b0:t)w
(i)
t , (19)

where δi(bt) = δ(bt − b
(i)
t ) is the Dirac delta function. When a

new observation is collected at time t+1, the SIS algorithm proceeds
through the following steps to recursively compute Ωt+1,

1. Importance sampling: b
(i)
t+1 ∼ π(bt+1|b

(i)
0:t,x0:t+1).

2. Weight update: w̃
(i)
t+1 = w

(i)
t

p(xt+1|b
(i)
0:t+1,x0:t)

π(b
(i)
t+1|b

(i)
0:t,x0:t+1)

3. Weight normalization: w
(i)
t =

w̃
(i)
t

P

N
k=1

w̃
(k)
t

It is straightforward to obtain data estimates from the approximate
pdf p̂(b0:t|x0:t). In particular, the marginal MAP symbol detector
is

b̂
map
t = arg max

bt

(

M
X

i=1

δ(bt − b
(i)
t )w

(i)
t

)

, (20)

which amounts to selecting the particle with the highest accumulated
weight (note that some particles can be replicated).

One major problem in the practical implementation of the
SIS algorithm is that after few time steps most of the particles
have importance weights with negligible values (very close to
zero). The common solution to this problem is to resample the
particles. Resampling is an algorithmic step that stochastically
discards particles with small weights while replicating those with
significant weight. In this paper, we consider only the conceptually
simplest resampling scheme, that generates a set of M new and
equally weighted particles, {b(i)

0:t, 1/M}M
i=1, by drawing from the

discrete probability distribution prsp(b
(i)
0:t) = w

(i)
t . Unfortunately,

resampling may cause major difficulties for the implementation of
SMC algorithms with parallel hardware, because it requires the
joint processing of all the particle weights. A discussion of the
implementation problems associated to some common resampling
schemes, as well as techniques to tackle them, can be found in [11].

3.2. Delayed Sampling

The performance of the SIS algorithm considerably depends on the
choice of importance function, π. However, even the optimal choice
of π can yield a poor performance when the channel is frequency
selective, even for small values of the CIR length, m, as shown in [5].
Detection in dispersive channels usually requires some smoothing
(i.e., to exploit posterior observations, x0:t+a, where 0 < a ≤ m−1
is a smoothing lag) in order to detect bt. In the context of particle
filtering, smoothing is also referred to as delayed sampling [9]
because particle b

(i)
t cannot be drawn until xt+a is observed.



The optimal smoothing importance pdf is

π(bt|b0:t−1,x0:t+a) = p(bt|b0:t−1,x0:t+a)

∝
P

b̃t+1:t+a∈BNa

Qa

k=0 p
“

xt+k|b0:t, b̃t+1:t+k,x0:t+k−1

”

,

(21)

In order to sample the importance function of (21), it is necessary to
evaluate the likelihoods p(xt+k|b0:t,x0:t−1), for k = 0, ..., a and
for each possible value of the sequence of vectors bt:t+a, normalize
them and then draw from the resulting discrete distribution.
Unfortunately, there are |B|N(a+1) possibilities for bt:t+a and the
evaluation of each likelihood involves running one step of a Kalman
filter which, in turn, has a computational complexity O(L3) because
of required matrix inversions. Therefore, the complexity of the
algorithm grows exponentially with the number of transmit antennas
and the smoothing lag, i.e., it is O(|B|N(a+1)).

4. NEW SMC-MAP EQUALIZERS

The SMC equalizer based on the optimal delayed importance
function is limited by its practically intractable computational
complexity. In [5, 6], new SMC smoothing schemes were proposed
that avoid the exponential growth of complexity, but they still
require to run banks of Kalman filters, as well as additional matrix
inversions, that involve O

`

(L(a + 1))3
´

operations. For many
MIMO systems, this is prohibitive, e.g., assuming the simplest case
a = 1, the complexity of these equalizers for the MU-UWB system
of Section 2.2 is O((UNf )3), where the code length Nf can be very
large.

In order to drastically reduce this stringent computational
requirements, we propose a scheme to directly approximate, using
samples, the joint smoothing distribution of the sequence of
symbol vectors and channel matrices given the observations, i.e.,
p(b0:t,H0:t|x1:t+a), instead of the marginal a posteriori pdf of
(17). Assume the general model of (2) for the observations. The joint
posterior filtering pdf admits the straightforward decomposition

p(b0:t+a,H0:t+a|x1:t+a) ∝ p(xt:t+a|bt−m+1:t+a,Ht:t+a)

× p(Ht:t+a|Ht−1)

× p(b0:t−1,H0:t−1|x1:t−1). (22)

Notice that p(xt:t+a|bt−m+1:t+a,Ht:t+a) and p(Ht:t+a|Ht−1)
are Gaussian pdf’s, straightforward to evaluate without the need of
Kalman filtering. Assume also a suitable proposal pdf of the form

πt(bt:t+a,Ht:t+a|b
(i)
0:t−1,H

(i)
0:t−1,x1:t+a) ∝

πt(bt:t+a|Ht:t+a)πt(Ht:t+a), (23)

with πt(bt:t+a|Ht:t+a) and πt(Ht:t+a) to be specified later, and
the weight update rule

w
(i)
t+a ∝ wt+a−1

p(xt:t+a|b
(i)
t−m+1:t+a,H

(i)
t:t+a)

πt(b
(i)
t:t+a|H

(i)
t:t+a)

×
p(H

(i)
t:t+a|H

(i)
t−1)

πt(H
(i)
t:t+a)

. (24)

The use of (23) and (24) yields a new set of weighted particles,

Ω̃t+a =
n“

b
(i)
0:t+a,H

(i)
0:t+a

”

, w
(i)
t+a

oM

i=1
, and the approximation

p(b0:t+a,H0:t+a|x1:t+a) ≈
M
X

i=1

w
(i)
t+aδi(b0:t+a)δi(H0:t+a).

(25)

Integrating (25) over bt+1:t+a and Ht+1:t+a, yields an estimate of
the desired joint smooting pdf,

p(b0:t,H0:t|x1:t+a) ≈

Z Z M
X

i=1

w
(i)
t+aδi(b0:t+a)δi(H0:t+a)

=
M
X

i=1

w
(i)
t+aδi(b0:t)δi(H0:t). (26)

Therefore, it is only necessary to keep the weighted particles up to

time t, Ωt+a =
n“

b
(i)
0:t,H

(i)
0:t

”

, w
(i)
t+a

oM

i=1
, and apply (23), (24) and

(26) sequentially, with resampling steps when needed. Approximate
MAP, smooth symbol estimates are computed as

b̂
map
t = arg max

bt

(

M
X

i=1

δ(bt − b
(i)
t )w

(i)
t+a

)

. (27)

4.1. Channel Sampling Scheme

Although the weight update equation (24) enables us to circumvent
the use of the Kalman filter (KF) banks in [9, 5, 6], we still need
to design a proposal pdf πt that avoids matrix inversions and any
other “heavy” computations. With that aim, we propose to use a
bank of (simple) adaptive channel estimators that play the same role
as the KF in [5], but with less stringent requirements. A similar idea
was applied, for single-user spread spectrum systems, in [12]. In this
paper, we will consider both least mean squares (LMS) and recursive
least squares (RLS) [13] channel estimation algorithms, to be briefly
described in Sections 4.1.1 and 4.1.2, respectively.

Independently of the channel estimation method, at time t there
is an available estimate, Ĥ

(i)
t−1, for each i ∈ {1, ..., M}. Taking

into account the AR model of the channel variation, we propose
to draw H

(i)
t from a Gaussian proposal pdf with mean γĤ

(i)
t−1 and

diagonal covariance matrix σ2
HI, where σ2

H is a design parameter.
The remaining channel samples, H

(i)
t+1:t+a, are then drawn using

the AR model. In summary,

H
(i)
t:t+a ∼ πt(Ht:t+a) = N(Ht|γĤ

(i)
t−1, σ

2
HI)

×
a
Y

k=1

N(Ht+k|γHt+k−1, σ
2
vI). (28)

Given H
(i)
t:t+a, we can draw the new symbol vector b

(i)
t (see

Section 4.2 for details) and then update the bank of adaptive channel
estimators, to yield Ĥ

(i)
t , i = 1, ..., M .

4.1.1. LMS Channel Estimation

Consider the minimum mean square error (MMSE) estimation of the
channel given b

(i)
0:t, i ∈ {1, ..., M}, and x1:t, i.e.,

Ĥ
(i)
t = arg min

Ht



E

»

‚

‚

‚
xt − Htb

(i)
t

‚

‚

‚

2
–ff

. (29)

The simplest way to adaptively solve (29) is the LMS algorithm [13],
which takes the form

Ĥ
(i)
t = Ĥ

(i)
t−1 − µ

“

Ĥ
(i)
t−1b

(i)
t − xt

”

b
(i)H

t , (30)

where µ << 1 is a step-size parameter.



4.1.2. RLS Channel Estimation

The LMS algorithm (30) has linear computational complexity,
but it usually exhibits a slow convergence rate and poor tracking
capabilities. To avoid these well-known drawbacks it is convenient
to use the exponentially-weighted RLS algorithm [13]. The channel
estimator is

Ĥ
(i)
t = arg min

H

(

t
X

k=0

λt−k
‚

‚xk − Hbk

‚

‚

2

)

, t = 1, 2, . . . ,

(31)
where 0 < λ < 1 is a forgetting factor. The sequence of problems
(31) can be recursively solved using the RLS algorithm, which
consists of the following two steps.

1. Initialization,

R
(i)−1

0 ∝ INm, (32)

Ĥ
(i)
0 = 0. (33)

2. Recursive update,

g
(i)H

t =
λ−1b

(i)H

t R
(i)−1

t−1

1 + λ−1b
(i)H

t R
(i)−1

t−1 b
(i)
t

(34)

Ĥ
(i)
t = Ĥ

(i)
t−1 +

“

xt − Ĥ
(i)
t−1b

(i)
t

”

g
(i)H

t

(35)

R
(i)−1

t = λ−1
R

(i)−1

t−1

“

INm + b
(i)
t g

(i)H

t

”

. (36)

The complexity of the resulting equalizer is linear with respect to
LNm. Since, normally, L ≥ N , it becomes O(N 2).

4.2. Data Sampling Scheme

When the channel sample, H
(i)
t:t+d, i ∈ {1, ..., M}, is available,

we build a data proposal pdf based on linear MMSE detection,
as suggested in [6], but avoiding the computation of inverse
matrices. In particular, we exploit the matrix inversion lemma [13]
to recursively approximate the inverse of the autocorrelation matrix

R
−1
t,x =

 

1

t

t
X

n=0

xt,ax
H
t,a

!−1

(37)

as

R̂
−1
0,x ∝ IL(a+1), R̂

−1
t,x = α−1

“

IL(a+1) − gt,ax
H
t,a

”

R̂
−1
t−1,x,

(38)
where 0 < α < 1 is a forgetting factor and gt,a =

α−1
R̂

−1
t−1xt,a

1+α−1xH
t,aR̂

−1
t−1xt,a

is a gain vector. A bank of N(a + 1) MMSE

linear filters is built,

W
(i)
t,a = σ2

b tR̂−1
t,xH

(i)
t,aE, (39)

for i = 1, ..., M , where W
(i)
t,a has dimensions L(a+1)×N(a+1),

σ2
b is the symbol power and E =

»

0N(m−1)×N(a+1)

IN(a+1)

–

, and

N(a + 1) soft data estimates are computed,

y
(i)
t,a = W

(i)
t,a

H
xt,a. (40)

Let y
(i)
j,t,a denote the j-th element in y

(i)
t,a, let bl,t be the l-th symbol

in bt and let j = Nk + q for integers k, q ≥ 0. Then, y
(i)
j,t,a

is an estimate of bq,t+k. If the symbols are binary, bq,t ∈ {±1}
(extension to higher order constellations is straightforward), we can
assign probabilities π

(i)
+1,q,t ∝ exp{− 1

σ2
y
|yj,q,t − 1|2 (where σ2

y is

a design parameter) and π
(i)
−1,q,t = 1 − π

(i)
+1,q,t, and draw a sample

b
(i)
q,t accordingly. Repeating this process for all symbols from time t

to time t + a we obtain the desired sample b
(i)
t:t+a. The evaluation

of πt(b
(i)
t:t+a|H

(i)
t:t+a) is carried out by adequately multiplying the

probabilities π
(i)
±1,q,t for q = 1, ..., N and t, ..., t + a.

4.3. Summary

The proposed algorithms are outlined in Table 1. A training
sequence, consisting of known symbols b0:K−1, is assumed for a
better initialization of the algorithms.

Initialization.
Let b0:K−1 be known (training) data.
Apply eq. (38) to compute R̂−1

x,K−1.
RLS channel estimation:
Apply eqs. (32)-(36) to compute ĤK−1 and R−1

K−1

(neglect superscript (i)) using b0:K−1.
LMS channel estimation:
Apply (30) to compute ĤK−1 (neglect superscript (i))
using b0:K−1.

Set b(i)
K−1 = bK−1 and Ĥ

(i)
K−1 = ĤK−1, H(i)

K−1 = ĤK−1

for i = 1, ..., M .

Set R(i)−1

K−1 = R−1
K−1 for i = 1, ..., M if RLS channel

estimation is selected.
Set w

(i)
K−1 = 1/M for i = 1, ..., M .

Recursive step: t ≥ K

1. Channel sampling: draw H
(i)
t:t+a ∼ πt(Ht:t+a) using

eq. (28), i = 1, ..., M .
2. Data sampling: update R̂−1

x,t and:

Compute y
(i)
t,a = W

(i)H

t,a xt,a.
Draw b

(i)
t:t+a as described in Section 4.2.

3. Update the weights using eq. (24).
4. Channel update:
LMS: use eq. (30) to compute Ĥ

(i)
t .

RLS: use eqs. (34)-(36) to compute Ĥ
(i)
t , R(i)−1

t .
5. Estimation:

b̂t = arg maxbt

n

PM

i=1 δ(bt − b
(i)
t )w

(i)
t+a

o

Ĥt =
PM

i=1 Ĥ
(i)
t w

(i)
t+a

6. Resampling.

Table 1. Proposed MIMO SMC equalization scheme.

5. SIMULATIONS

5.1. A 3 × 2 Multi-Antenna System

Consider a simple system with N = 2 transmitting antennas, L = 3
receiving antennas and CIR length m = 2. The parameters of the
channel AR process are γ = 1 − 10−5 and σ2

v = 10−4. Also



assume a BPSK modulation format, thus B = {±1}, and burst
data transmission in blocks of 300 symbol vectors (i.e., 600 binary
symbols overall), including a training sequence of K = 30 symbol
vectors.

Within this simulation setup, we have compared the optimal
smoothing SMC equalizer described in Section 3.2 (labeled “D-SIS
opt”) with the two low-complexity SMC smoothers proposed in this
paper (labeled “LMS-D-SIS” and “RLS-D-SIS”, depending on the
type of adaptive channel estimator used). The smoothing lag is
a = 1 for the three equalizers. The plots described below have
been obtained from the simulation of 40 independent simulations
(one data block per simulation).

Figure 1 (upper) depicts the Bit Error Rate (BER) of the
different equalizers for several SNR values, when the number of
particles generated by the SMC algorithms is M = 30. The curve
labeled “MLSD” shows the performance of the maximum likelihood
sequence detector (MLSD) implemented via the Viterbi algorithm,
with perfect knowledge of the time-varying CIR, and serves as a
reference for performance. It can be seen that the “RLS-D-SIS”
equalizer attains practically optimal performance up to SNR=9 dB.
The “LMS-D-SIS” equalizer has an approximately constant loss of
≈ 1 dB for the whole range of SNR values, but has the advantage of
its greater simplicity.
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Fig. 1. Upper: BER of the SMC equalizers and the MLSD for
several values of the SNR (M=100 particles). Lower: Approximate
MSE, in channel estimation, of the SMC equalizers and the Kalman
filter for several values of the SNR (M=100 particles).

Similar results are obtained in terms of the normalized mean
square error (MSE) of the channel estimates, as shown in Figure 1
(lower). The normalized MSE is defined as

MSE(t) =
1

S

S
X

s=1

Trace

»

“

Ĥt(s) − Ht(s)
”“

Ĥt(s) − Ht(s)
”>
–

Trace
`

Ht(s)H>
t (s)

´ ,

(41)
where S = 40 is the number of simulation trials and Ĥt(s) is the
estimate of Ht(s) provided by an equalizer in the s-th simulation.
We observe that both the “D-SIS opt” and “RLS-D-SIS” equalizers
attain nearly equal MSE for the range of considered SNR values,
while the “LMS-D-SIS” method suffers from a performance loss.

5.2. A Simple MU-UWB system

For the next set of computer experiments, consider a MU-UWB
communication system with U = 2 users, Nf = 16 frames per
symbol, Nc = 16 pulse slots per frame (i.e., Tf = 16Tg , with
Tg = 1 for convenience) and P = 4Nc = 64 pulse-rate channel
coefficients per user (βn,j with n = 1, 2 and j = 0, ..., 63,
according to the notation in Section 2.2). Each user transmits data
in bursts of 1000 BPSK-modulated symbols, including a leading
traning sequence of length K = 100.

For the simulations, we have assumed that the non-zero
coefficients in the overall channel matrix Hk, k = 0, ..., 999, of
(15) are time-varying. The variation model is of the AR type, with
the fundamental parameters βn,j being randomly and independently
generated for each simulation trial (βn,j ∼ N(β|0, 0.01)), and the
coefficients of Hk being updated as

Hk(1) = γHk−1(1) + Uk(1), (42)

Hk(0) = γHk−1(0) + Uk(0), (43)

where γ = 1 − 10−5,

Hk(1) =

2

6

6

4

QNf
2

(k − 1) F0(k)

...
...

QNf−1(k − 1) FNf
2

−1
(k)

3

7

7

5

, (44)

Hk(0) =

2

6

6

4

FNf
2

(k)

...
FNf−1(k)

3

7

7

5

(45)

and Uk(1) and Uk(0) are U
Nf

2
× 2U and U

Nf

2
× U matrices,

respectively, with random i.i.d. elements distributed according to a
N(u|0, 10−6) Gaussian pdf.

We have applied the “RLS-D-SIS” algorithm to the equalization
of the resulting MIMO channel. One peculiarity of the MU-UWB
model is that, because of the structure of Hk (namely, because of
the U

Nf

2
× U lower-left zero submatrix) it is convenient to run

independent RLS algorithms to estimate Hk(0) and Hk(1), hence
the “RLS-D-SIS” equalizer with M particles requires a bank of 2M
RLS procedures.

Figure 2 shows the normalized MSE (defined according to (41))
of the channel estimates attained by the proposed SMC equalizer
as a block of data is processed. As a reference, the MSE of the
channel estimates computed via a genie-aided RLS algorithm with
knowledge of the transmitted symbols, b0:999, is also shown. It
can be seen that the proposed equalizer attains practically optimal
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Fig. 2. Evolution of the normalized MSE for (a) SNR=8 dB, (b) SNR=12 dB and (c) SNR=16 dB. The SMC equalizer employs M = 50
particles.

channel estimation for SNR≥ 12 dB (and only a small loss for
SNR=8 dB). The number of particles generated by the particle
filtering algorithm was set to M = 50 and the presented plots are
the result of averaging the errors in S = 15 independent simulation
trials.

The average BER attained by the SMC equalizer in these trials,
compared to the BER of a MLSD with perfect knowledge of the Hk

matrices, is shown in Table 2.

SNR=8 dB 12 dB 16 dB
MLSD 0.038 0.015 0.001

RLS-D-SIS 0.059 0.031 0.003

Table 2. BER of the “RLS-D-SIS” equalizer (M = 50 particles)
and the genie-aided MLSD detector with perfect knowledge of the
channel matrices (rounded to within ±0.001).

6. CONCLUSIONS

Existing particle filtering methods for MIMO channel equalization
suffer from severe limitations because of their high computational
requirements. In this paper we have introduced two low complexity
sampling schemes that perform O(N 2) operations per particle,
N being the number of inputs to the MIMO channel. The
proposed equalizers are particularly suitable for implementation
using parallel hardware and application in scenarios where either
online detection is required or large dimensional MIMO channels
need to be estimated. We have illustrated the performance of the
proposed methods by computer simulations of a 2-input, 3-output
multi-antenna system and a multiuser UWB transmission system.
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