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Abstract

Cost-reference particle filtering (CRPF) is a recently proposed sequential Monte Carlo (SMC) methodology aimed at estimating
the state of a discrete-time dynamic random system. The estimation task is carried out through the dynamic optimization of a
user-defined cost function which is not necessarily tied to the statistics of the signals in the system. In this paper, we first revisit
the basics of the CRPF methodology, introducing a generalization of the original algorithm that enables the derivation of some
common particle filters within the novel framework, as well as a new and simple convergence analysis. Then, we propose and
analyze a particle selection algorithm for CRPF that is suitable for implementation with parallel computing devices and, therefore,
circumvents the main drawback of the conventional resampling techniques for particle filters. We illustrate the application of the
methodology with two examples. The first one is an instance of one class of problems typically addressed using SMC algorithms,
namely the tracking of a maneuvering target using a sensor network. The second example is the application of CRPF to solve a
dynamic optimization problem.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems in physics, engineering, and biology can be modeled using discrete-time random dynamical sys-
tems in state-space form [1,2]. Usually, the signal of interest is the system state, which cannot be observed directly but
through related noisy observations collected in a sequential manner. Unfortunately, the optimal (Bayesian) estimation
of the state given these observations is analytically intractable except in very few specific cases (the most important
one being the linear-Gaussian system, which can be handled by means of the well-known Kalman filter [3]). There-
fore, both deterministic and Monte Carlo methods have been suggested to numerically approximate the desired state
estimates [4,5].
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SMC methods, also known as particle filtering (PF) techniques, are a family of recursive algorithms capable of
attaining asymptotically optimal estimation of the state of a nonlinear and/or non-Gaussian discrete-time dynamical
system [6–9]. They enable the online processing of the observations and their range of applicability is very broad.
Indeed, few constraints are imposed on the dynamic system, other than the availability of a probabilistic model for
the state and observation noise processes. PF algorithms aim at representing the a posteriori probability distribution of
the system state given the available observations by means of an empirical discrete probability measure with random
support. This measure consists of particles, which are samples in the state space, with associated weights, and can
be updated recursively each time a new observation is collected. The moments of the discrete measure converge
asymptotically, as the number of particles grows, to those of the true posterior probability of the state [10].

Their generality notwithstanding, particle filters have some limitations. A general PF algorithm consists of three
steps [8]: (i) sampling of new particles according to a proposal distribution, (ii) weighting of the particles according
to the observations, and (iii) selection of particles (commonly called resampling), which consists of stochastically dis-
carding low-weight particles while replicating those with higher weights. The fundamental step of assigning weights
to particles requires, at least, the ability to draw samples from the state prior probability distribution and to evalu-
ate the likelihood function. Explicit probabilistic models may be readily available for some applications (e.g., digital
communications), but may be hard to obtain for others. In general, working out a tractable and realistic probabilistic
model often becomes a major task by itself. Another important drawback of conventional SMC techniques is that they
are computationally intensive and, although the first two steps (sampling and weighting) can be carried out indepen-
dently for each particle, the resampling step often becomes a bottleneck for parallel computation, as it involves the
joint processing of all particles (see [11] for recent results on this topic).

A new family of recursive methods with the same basic algorithmic structure as particle filters (steps (i), (ii), and
(iii) above) was introduced in [12]. Instead of relying on a probabilistic model of the dynamic system to approxi-
mate the a posteriori distribution of the state, the new methods perform the dynamic optimization of an arbitrary cost
function (not necessarily tied to the statistics of the state and observation processes) that enables a quantitative dis-
crimination of the “good” and “bad” particles. Although it may seem that exchanging one model (the probabilities) by
another one (the cost) does not tackle the actual problem, it can be reasonably expected that simple cost functions can
be easily found for almost any practical problem. In this way, we may often substitute a complex, or even intractable,
probabilistic model by a much simpler one. This simplicity, in turn, translates into algorithms which are easier to de-
sign and implement. Moreover, this new class of algorithms has the potential to be distribution-free, since they provide
state estimates that minimize the chosen cost function for a variety of different noise distributions in the system. The
obvious drawback is that no optimal performance (in any statistical sense) can be claimed. The new methodology was
termed cost-reference particle filtering (CRPF) in [12].

In Section 2 of this paper, we revisit the basics of CRPF and propose some generalizations of the original algorithm
that enable the derivation of the most common (conventional) particle filters as instances of the new methodology.
A simpler analysis of convergence, compared to the one in [12], is also presented. In Section 3, we investigate the
selection of particles. We first note that particle selection procedures for CRPF are weaker than resampling algorithms
for conventional particle filters, meaning that they are subject to less stringent constraints. Then, we prove that both the
standard multinomial resampling scheme and a simpler procedure termed local selection are proper particle selection
methods in a certain technical sense. The latter technique was suggested, with a more restrictive form and without
analysis, in [12] and it has the advantage of lending itself to straightforward implementation with parallel computing
devices. In order to illustrate the theoretical results, we have considered two numerical examples in Sections 4 and 5.
The first one is a typical instance of the class of problems usually tackled with SMC algorithms, namely the tracking
of a maneuvering target [13]. The second example is a modification of the Hartman 3 problem [14,15], in which a
subset of the objective function parameters varies with time, hence a dynamic optimization problem has to be solved.
Finally, Section 6 is devoted to the conclusions.

2. Cost-reference particle filtering

2.1. Problem statement

We consider the problem of estimating the sequence of states of a discrete-time Markovian dynamic system which
cannot be observed directly. Formally, such systems can be described by the pair of equations
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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ARTICLE IN PRESS YDSPR:683
JID:YDSPR AID:683 /FLA [m3SC+; v 1.67; Prn:2/11/2006; 9:09] P.3 (1-21)

J. Míguez / Digital Signal Processing ••• (••••) •••–••• 3
xt = fx(xt−1,ut ) (state equation), (1)

yt = fy(xt ,vt ) (observation equation), (2)

where:

• {xt ∈ R
nx }t∈N is the state process (the signal of interest),

• {ut ∈ R
nu}t∈N is the system noise process,

• fx : Rnx × R
nu → R

nx is the (possibly nonlinear) state transition function,
• {yt ∈ R

ny }t∈N is the observation (or measurement) process,
• {vt ∈ R

nv }t∈N is the observation noise process, and
• fy : Rnx × R

nv → R
ny is the (possibly nonlinear) observation function.

We use regular lower-case letters for real scalars (e.g., a ∈ R), boldface lower-case letters for vectors (e.g., a ∈ R
n)

and, eventually, boldface capital letters for matrices (e.g., A ∈ R
m×n).

The goal is to estimate the sequence x0:t � {x0, . . . ,xt } from the observations y1:t � {y1, . . . ,yt }. Conventional PF
algorithms are Bayesian techniques that address this problem by approximating the a posteriori probability density
function (pdf) of the states, p(x0:t |y1:t ), using a discrete probability measure with random support. They require the
availability of a probabilistic model including, at least, the a priori pdf of the state, p(x0), the conditional density of the
Markovian state process, p(xt |xt−1), and the likelihood function, p(yt |xt ). In this paper, we consider the alternative
approach described next.

2.2. General algorithm

Instead of imposing an explicit probabilistic model on system (1)–(2), let us assume the availability of a lower-
bounded real cost function of the form

C : R
nx(t+1) × R

ny t → [
C

opt
t ,∞)

(x0:t ,y1:t ) � C(x0:t ,y1:t ) , (3)

where

C
opt
t � inf

x0:t
C(x0:t ,y1:t ),

∣∣Copt
t

∣∣ < ∞, (4)

is the optimal cost at time t . Function C yields a quantitative assessment of a trial state sequence, x0:t , given the
actual sequence of observations, y1:t , and CRPF is a methodology to recursively compute sequences of states with
low (ideally minimal) cost. Let us further assume that function C has a recursive structure,

C(x0:t ,y1:t ) = λC(x0:t−1,y1:t−1)��C(xt ,yt ), (5)

where 0 � λ � 1 works as a memory factor (similarly to the exponentially-weighted recursive least squares algo-
rithm [2]); the operator � denotes a real function of two real arguments; and �C : Rnx × R

ny → [�C
opt
t ,∞) is the

incremental cost function, where

�C
opt
t � inf

xt

�C(xt ,yt ) (6)

is the optimal incremental cost at time t . The use of an arbitrary operation �, instead of the simple addition in [12],
extends the applicability of the method. Not only a broader class of cost functions can be defined but it also enables
the derivation of the most common particle filters as instances of the CRPF method, as will be shown in Section 2.4.

Assume now that a set of M particles and their associated costs up to time t − 1, i.e., Ωt−1 = {x(i)
0:t−1,C

(i)
t−1}Mi=1,

is available, where C
(i)
t−1 � C(x(i)

0:t−1,y1:t−1) is a convenient shorthand that we will often use in the sequel. We can
introduce a risk function

R : [Copt
t−1,∞

) × R
nx × R

ny → R,(
C

(i)
,x(i)

,yt

) � R
(
C

(i)
,x(i)

,yt

)
, (7)
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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where i ∈ {1, . . . ,M}, in order to measure the adequacy of a candidate state at time t − 1 to be propagated up to time t

given the new observation, yt . It is natural to choose the risk function as a prediction of the cost at time t , i.e.,

R
(
C

(i)
t−1,x(i)

t−1,yt

) = λC
(i)
t−1 ��C

(
fx

(
x(i)
t−1,0

)
,yt

)
, i ∈ {1, . . . ,M} (8)

(note the zero-noise argument of function fx ). Another straightforward choice of risk is the blind function that ignores
the new observation and simply works with the current (t − 1) cost, i.e.,

R
(
C

(i)
t−1,x(i)

t−1,yt

) = C
(i)
t−1, i ∈ {1, . . . ,M}. (9)

Using the above elements as building blocks, a CRPF algorithm aims at the online minimization of the cost function
C by means of the recursive procedure below.

(1) Initialization. In order to avoid that the initial particles, {x(i)
0 }Mi=1, be infinitely far away from the true state, we

assume knowledge of a set E0 ⊂ R
nx such that x0 ∈ E0 (this is a structural rather than a probabilistic assumption).

Then, initial samples can be drawn from an arbitrary pdf with domain E0. Costs are set to a single constant,
C

(i)
0 = c, i = 1, . . . ,M .

(2) Recursive loop. Given the weighted particle set (wps) Ωt−1 = {x(i)
0:t−1,C

(i)
t−1}Mi=1, two steps are taken at time t :

(a) Selection. Convert Ωt−1 into a new wps Ω̂t−1 = {x̂(i)
0:t−1, Ĉ

(i)
t−1}Mi=1, where x̂(i)

0:t−1 ∈ {x(k)
0:t−1}Mk=1 and either

Ĉ
(i)
t−1 = C(x̂(i)

0:t−1,y1:t ) or Ĉ
(i)
t−1 = c (constant) for all i.

Particles in Ω̂t−1 are selected according to their risks, R
(i)
t � R(C

(i)
t−1,x(i)

t−1,yt ). Deterministic selection is
valid (particles with lower risks can be replicated and the ones with the larger risks be discarded). Alter-
natively, an straightforward stochastic procedure is the common multinomial resampling scheme, using the
probability mass function (pmf) ς

(i)
t ∝ μ(R

(i)
t ), where μ : R → [0,∞) is a nonnegative and monotonically

nonincreasing function.
(b) Propagation. For i = 1, . . . ,M , let

x(i)
t ∼ pt

(
x|x̂(i)

t−1

)
, (10)

C
(i)
t = λĈ

(i)
t−1 ��C

(i)
t , (11)

where �C
(i)
t � �Ct(x

(i)
t ,yt ) and pt is an arbitrary propagation pdf chosen by the user.

(3) Estimation. Whenever necessary, and concurrently with the recursive loop, estimates of the state can be drawn.
Several possibilities exist. The straightforward one is to choose the particle with the smallest cost,

i0 = arg min
i∈{1,...,M}

{
C

(i)
t

}
, xmin

t = x(i0)
t . (12)

It is also possible to use a pmf of the form π
(i)
t ∝ μ(C

(i)
t ) (again, μ denotes a nonnegative and monotonically

nonincreasing function) to obtain a mean cost estimate

xmean
t =

M∑
i=1

x(i)
t π

(i)
t , (13)

which usually exhibits a smoother time evolution than that of xmin
t .

Many implementations of the CRPF method are possible for a single problem by adequately choosing the opera-
tion �, the value of the memory factor λ and function μ. The latter will hereafter be referred to as generating function,
and it plays an important role in the analysis of the selection step.

2.3. Cost function

The choice of cost function is a major feature of a specific CRPF algorithm. In many practical problems, it is
given (e.g., the objective function in standard optimization problems such as the example in Section 5) or there is
some “natural” cost to be used (e.g., Euclidean distance in target tracking problems with noisy observations of the
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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Table 1
Standard bootstrap filter

1. Initialization: draw M particles from the a priori pdf of the

state, i.e., sample x(i)
0 ∼ p(x0), i = 1, . . . ,M .

Since there is no associated observation, the weights are uniform,

w
(i)
0 = 1/M , i = 1, . . . ,M .

2. Recursive step: given the wps {x(i)
t−1,w

(i)
t−1}M

i=1,
(a) draw new particles

x(i)
t ∼ q(xt ) = ∑M

k=1 w
(k)
t−1p(xt |x(k)

t−1), i = 1, . . . ,M ,
where q is called the importance function, and

(b) assign importance weights proportional to the likelihoods,

w
(i)
t ∝ p(yt |x(i)

t )

(the weights are normalized to ensure
∑M

k=1 w
(k)
t = 1).

Table 2
Derivation of the SBF from the CRPF methodology

1. λ = 0, C
(i)
0 = 0, ∀i, and additive cost increments, �≡ +.

2. Incremental cost and generating function jointly designed to yield
μ(�C(xt ,yt )) ∝ p(yt |xt )

(e.g., �C(xt , yt ) = |xt − yt |2 and μ(z) = e−z/2 for a Gaussian
likelihood).

3. Initial and propagation densities chosen in agreement with the
probabilistic model, i.e., p0(x0) = p(x0) and pt (xt ) = p(xt |xt−1),
respectively.

4. Selection at each time step with blind risks R
(i)
t = C

(i)
t−1 and

multinomial resampling with probabilities ς
(i)
t ∝ μ(R

(i)
t ).

target position). In general, the only strong requirement for �C is that it should be simple to evaluate, though not
necessarily analytically. Therefore, CRPF is suitable to minimize absolute error functions, since no assumptions on
differentiability are needed. Besides, lower bounded, real functions of the form d(fy(xt ,0),yt+1) that comply with
the triangle inequality, d(a, b) � d(a, c)+ d(c, b), are often good candidates. This includes pseudo-distances, like the
Kullback-Leibler divergence (KLD) [16], that can be used in problems where the goal is to optimize a sequence of
probability measures (e.g., in order to find the capacity of a communication channel) but even the property d(a, b) =
0 ⇔ a = b is not strictly needed, since functions with several global maxima can also be handled with CRPF.

2.4. Conventional particle filters

Some of the most widely used PF algorithms can be obtained as instances of the CRPF method. Specifically,
we show how a proper choice of the cost and risk functions, forgetting factor, generating function and the binary
operator � can yield the standard bootstrap filter (SBF) [6] and the sequential importance sampling-resampling (SISR)
algorithm [8].

Assume that a probabilistic model is imposed on system (1)–(2). The model depends on the pdf’s of the state and
observation noise processes, p(ut ) and p(vt ), respectively, but it is more conveniently stated in terms of the transition
density p(xt |xt−1) and the likelihood function p(yt |xt ). The SBF is a simple algorithm for approximating the so-
called filtering pdf, p(xt |y1:t ), and can be outlined as shown in Table 1 [17]. Note that the selection and propagation
of particles are carried out jointly in the SBF, when drawing from the mixture distribution q(xt ) in step 2(a).

The SBF algorithm can be derived from the general CRPF methodology by the choice of parameters shown in Ta-
ble 2. The importance weights of the SBF, w

(i)
t , yield a discrete probability measure, pM(xt |y1:t ) = ∑M

i=1 w
(i)
t δi(xt −

x(i)
t ), where δ(·) is the Dirac delta function, whose moments converge almost surely (a.s.) to those of the filtering

density p(xt |y1:t ) [10]. It is apparent that the CRPF algorithm specified by Table 2 yields w
(i)
t ≡ π

(i)
t ∝ μ(C

(i)
t ),

hence the minimum cost estimator of (12) becomes a maximum a posteriori (MAP) estimate of xt and the mean cost
estimator (13) yields the minimum mean square (MMSE) estimate of xt .
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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Table 3
Sequential importance sampling with resampling

1. Initialization: the same as in the SBF.

2. Recursive step: given {x(i)
t−1,w

(i)
t−1}M

i=1,
(a) draw new particles from an arbitrary importance function,

x(i)
t ∼ q(xt ), i = 1, . . . ,M ,

(b) assign the (normalized) importance weights,

w
(i)
t ∝ w

(i)
t−1p(yt |x(i)

t )p(x(i)
t |x(i)

t−1)/q(x(i)
t ),

(c) if needed, resample according to the weights {w(i)
t }M

i=1.

Table 4
Derivation of the SISR algorithm from the CRPF methodology

1. λ = 1, C
(i)
0 = 1, ∀i, and multiplicative cost increments, �≡ ×.

2. Incremental cost designed to meet the quotient of probabilities
�C(xt ,yt ) ∝ q(xt )/p(yt |xt )p(xt |xt−1).

3. Generating function μ(z) = z−1.
4. Initial pdf p0(x0) = p(x0).
5. Propagation densities in agreement with the importance function,

pt (xt ) = q(xt ).

6. Selection (if needed) according to the risks R
(i)
t = C

(i)
t−1 and

particle probabilities ς
(i)
t ∝ μ(R

(i)
t ), using the same resampling

scheme as in the SISR procedure.

The SISR procedure is summarized in Table 3 [8], while the specification of the equivalent CRPF algorithm is given
in Table 4. We note that, depending on the resampling scheme, the selected costs may be reset to Ĉ

(i)
t = 1/M , ∀i. The

same comments as in the SBF can be applied regarding the meaning of the minimum and mean cost estimators of (12)
and (13).

2.5. Convergence of the propagation step

The particles in the set Ωt are, in general, the output of two random procedures, namely (a) the selection step that
converts Ωt−1 into Ω̂t−1 and (b) the sampling of the propagation pdf’s pt(x|x̂(i)

t−1), i = 1, . . . ,M . Assume that both

procedures can be jointly described by a single, yet possibly unknown, pdf that we denote as ps
t (x|{x̂(k)

t−1}Mk=1). Then

we can simply write that x(i)
t ∼ ps

t (x|{x̂(k)
t−1}Mk=1).

Resorting to ps
t , we can define the set of states at time t that can be actually reached after the propagation step, i.e.,

let

Xt �
{

x ∈ R
nx : ∀ε > 0,

∫
x′∈Rnx : ‖x−x′‖�ε

ps
t

(
x′∣∣{x̂(k)

t−1

}M

k=1

)
dx′ > 0

}
, (14)

where ‖ · ‖ denotes the norm of a vector in a multidimensional Euclidean space. There is a zero probability that the
propagation step produces a particle with incremental cost lesser that �C∗

t = �C(x∗
t ,yt ), where

x∗
t � arg min

x∈Xt

{�C(x,yt )
}

(15)

is not necessarily unique. We use the following notation for two particular classes of sets containing the incremental
cost �C∗

t ,

It (ε) �
[�C∗

t ,�C∗
t + ε

)
(16)

and its discrete counterpart,

IM
t (ε) � It (ε) ∩ {�C

(i)
t

}M
, (17)
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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where ∩ denotes set intersection.
The following theorem grants that we always have particles with an incremental cost arbitrarily close to �C∗

t as
long as M is sufficiently large.

Theorem 1. Assume that �C(xt ,yt ) is continuous at x∗
t and let δM > 0 be a real function of M . If δM � M−ψ for

any 0 < ψ < 1, then

lim
M→∞

∣∣IM
t (δM)

∣∣ = ∞ (a.s.). (18)

See Appendix A for a proof.
Given a discrete set A, notation |A| indicates the number of elements contained in the set. Note that Theorem 1

alone guarantees that limM→∞ min{�C
(i)
t+1}Mi=1 = �C∗

t a.s., i.e., that for M sufficiently large we will always find
some particle arbitrarily close to a the minimum of �C in Xt+1. This is actually (a convenient version of) the basic
result exploited by random search algorithms (see, e.g., [18] and references therein).

3. Selection methods

A practically inevitable step in conventional PF is resampling, which consists of stochastically replicating the
“good” particles (those with a high importance weight) while discarding the “bad” ones, and is aimed at avoiding the
degeneracy of the particle filter [8].

In general, the goal of resampling is to obtain a set of particles that still approximate the desired posterior pdf but
have more evenly distributed weights [19,20]. Selection procedures for CRPF are possibly weaker, in the sense that

they are subject to less stringent constraints. In particular, if we let Ωt = {x(i)
0:t ,C

(i)
t }Ḿi=1 be the wps provided by the

algorithm at time t , we do not request that the resulting selected set, Ω̂t = {x̂(i)
0:t , Ĉ

(i)
t }Mi=1, be equivalent in any sense to

Ωt (also note that we can allow Ḿ �= M for generality). In fact, since the goal is to preserve the particles with smaller
risks, we term a selection technique as proper if it simply guarantees that

lim
M→∞ R̄t − ¯̂

Rt � 0, (19)

where

R̄t =
Ḿ∑
i=1

ς
(i)
t R

(i)
t , (20)

¯̂
Rt =

M∑
i=1

ς̂
(i)
t R̂

(i)
t (21)

are the mean risk before and after selection, respectively. We abide by the notation introduced in Section 2.2, hence
ς

(i)
t ∝ μ(R

(i)
t ) is the selection pmf and we use R̂

(i)
t = R

(k)
t to denote the risk of the selected particle x̂(i)

0:t = x(k)
0:t ,

i ∈ {1, . . . ,M}, k ∈ {1, . . . , Ḿ}. Accordingly, the pmf that yields the mean risk of the selected particles is defined as
ς̂

(i)
t ∝ μ(R̂

(i)
t ). Intuitively, we say a selection method is proper when it does not cause an increase in the mean risk of

particles for large M . No other constraints are imposed. Deterministic selection, as an example, is a valid approach if
we accept criterion (19), although we will focus on stochastic selection procedures in this paper.

The advantage of relaxing the design of selection techniques is the possibility to minimize the interaction among
particles. Beware that the joint processing of particles required by standard resampling techniques is a bottleneck for
the parallelization of the computations, and it is severely restraining the practical implementation of PF algorithms
using massively parallel VLSI devices [11].

In the remaining of this section we investigate the use of two stochastic selection approaches. The first one is a
straightforward extension of multinomial resampling [8,19,20] to the CRPF context, while the second is a refinement
of the easy-to-parallelize method termed local selection in [12]. We prove that both methods are proper according
to (19) and briefly discuss the practical advantages of the local approach.
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
tracking and dynamic optimization, Digital Signal Process. (2006), doi:10.1016/j.dsp.2006.09.003



ARTICLE IN PRESS YDSPR:683
JID:YDSPR AID:683 /FLA [m3SC+; v 1.67; Prn:2/11/2006; 9:09] P.8 (1-21)

8 J. Míguez / Digital Signal Processing ••• (••••) •••–•••
Table 5
Global selection preserving the costs of the selected particles

Original wps: Ωt = {x(i)
0:t ,C

(i)
t }Ḿ

i=1.

Risk computation: R
(i)
t+1 = R(C

(i)
t ,x(i)

t ,yt+1).

Selection pmf: ς
(i)
t+1 ∝ μ(R

(i)
t+1).

Multinomial resampling: x̂(i)
0:t ∼ p(x̂0:t = x(k)

0:t ) = ς
(k)
t+1, for i = 1,2, . . . ,M

and k ∈ {1,2, . . . , Ḿ}.
New wps: Ω̂t = {x̂(i)

0:t , Ĉ
(i)
t }M

i=1, where Ĉ
(i)
t = C

(k)
t if x̂(i)

0:t = x(k)
0:t .

Table 6
Local selection with k offsprings per original particle (M = kḾ)
and preserving the costs of the selected particles

Original wps: Ωt = {x(i)
0:t ,C

(i)
t }Ḿ

i=1.

Risk computation: R
(i)
t+1 = R(C

(i)
t ,x(i)

t ,yt+1).

Selection pmf’s: for i = 1,2, . . . , Ḿ and l = i − 1, i,

ς
(l)
i,t+1 = μ(R

(l)
t+1)/

∑i
j=i−1 μ(R

(j)
t+1),

where R
(0)
t+1 � R

(Ḿ)
t+1 .

Local resampling:

For i = 1,2, . . . , Ḿ ,

For r = (i − 1)k + 1, . . . , ik,

x̂(r)
0:t ∼ p(x̂0:t = x(l)

0:t ) = ς
(l)
i,t+1, l ∈ {i − 1, i}.

New wps: Ω̂t = {x̂(i)
0:t , Ĉ

(i)
t }M

i=1, where Ĉ
(i)
t = C

(k)
t if x̂(i)

0:t = x(k)
0:t .

3.1. Global vs local selection

The extension of the common multinomial resampling is summarized in Table 5 and will be termed global selec-
tion. Obviously, it requires the joint processing of all particles and, therefore, prevents the implementation of CRPF
algorithms using parallel hardware. Nevertheless, it may still be a good choice for relatively simple problems, and it
is a proper method.

Theorem 2. Global selection is proper according to (19), with convergence of the limit in probability1 (i.p.).

See Appendix B for a proof.
In order to ease parallel implementation, a simple local selection scheme was proposed in [12]. This procedure

significantly reduces the interaction among particles by constraining resampling to within Ḿ independent subsets of

three particles, namely {{x(l)
0:t ,C

(l)
t }i+1

l=i−1}Ḿi=1. A further simplification leads to sampling within sets including only

pairs of consecutive particles, i.e., {{x(l)
0:t ,C

(l)
t }il=i−1}Ḿi=1, (assume x(0)

0:t � x(Ḿ)
0:t and C

(0)
t � C

(Ḿ)
t ) which reduces par-

ticle interaction to the communication of the pair {x(i)
0:t ,R

(i)
t+1} from particle i to particle i + 1. This is the form of

the local selection algorithm summarized in Table 6, which admits a straightforward implementation using parallel
computing devices with limited communication capabilities (one-directional and between adjacent processors only).
Moreover, the method can be shown to be statistically sound according to the adopted criterion if we assume M = Ḿ

and the following regularity conditions.

(R1) Both |R(j)
t | < ∞ and μ(R

(j)
t ) < ∞, j = 1, . . . ,M .

(R2) Let AM � {1, . . . ,M} and

1 Statements of the type limn→∞ a(n) > limn→∞ b(n) i.p. should be read as limn→∞ probability{a(n) � b(n)} = 0.
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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A+
M �

{
i ∈ AM : R

(i)
t − R̃

(i−1)
t � 0

}
, (22)

A−
M �

{
i ∈ AM : R

(i)
t − R̃

(i−1)
t < 0

}
, (23)

assuming R
(i)
t = R

(j)
t ⇔ i = j , so that AM = A+

M ∪ A−
M , and defining R

(0)
t � R

(M)
t . Then, the following limits

exist

lim
M→∞

∑
i∈A+

M
R

(i)
t − R

(i−1)
t

|A+
M | = lim

M→∞

∑
i∈A−

M
R

(i−1)
t − R

(i)
t

|A−
M | = dR > 0. (24)

(R3) limM→∞ |A+
M |/|A−

M | = 1.
(R4) The following limits exist

lim
M→∞

∑
i∈A+

M
μ(R

(i−1)
t ) − μ(R

(i)
t )

|A+
M | = lim

M→∞

∑
i∈A−

M
μ(R

(i)
t ) − μ(R

(i−1)
t )

|A−
M | = dμ > 0. (25)

Theorem 3. Assuming M = Ḿ and the regularity conditions (R1)–(R4), local selection is proper according to (19),
with convergence of the limit i.p.

See Appendix C for a proof.
Independently of the method, performing selection for each t is neither necessary nor necessarily advantageous:

both in terms of computational complexity and performance it is usually desirable to select particles only occasionally.
No analytical results can be given yet that indicate an adequate strategy for triggering the selection procedure, since
the usual estimation of the effective sample size in standard PF [8] cannot be directly translated to CRPF.

4. Application example: Maneuvering target tracking

Consider an object (hereafter the target) that emits some radio signal while moving along a two-dimensional space.
A region of this space is monitored by a set of sensors that provide noisy measurements of the signal power received at
their respective locations. These data are transmitted to a fusion center, where they are used to recursively estimate the
position and velocity of the target. Below, we present a signal model for this problem, then we describe the algorithms
used to track the target and, finally, we show some illustrative simulation results.

4.1. Signal model

The maneuvering target tracking problem can be well represented using a random dynamical model. The system
state at time t = 0,1,2, . . . consists of the target position, rt = [r1,t , r2,t ]� ∈ R

2, and velocity, vt = [v1,t , v2,t ]� ∈ R
2.

Its evolution can be modeled as [21]

xt = Axt−1 + Qut , (26)

where xt = [r�
t ,v�

t ]� ∈ R
4 is the state vector, ut is a two-dimensional zero-mean Gaussian process with covariance

matrix σ 2
u I2, i.e., the pdf of ut is N(ut |0, σ 2

u I2) (Ik denotes the k × k identity matrix), and the matrices A and Q are
defined as

A =
⎡
⎢⎣

1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1

⎤
⎥⎦ and Q =

⎡
⎢⎣

1
2T 2 0

0 1
2T 2

T 0
0 T

⎤
⎥⎦ , (27)

where T > 0 is the observation period (i.e., the time between consecutive measurements). The a priori pdf of the state
is also Gaussian, namely p(x0) = N(r0|0,5I2) × N(v0|0, 1

4 I2).
Observations are collected through a set of N sensors with known locations, ri ∈ R

2, i = 1, . . . ,N , that mea-
sure the power of the radio signal received from the target. Assuming the log-normal model widely used in cellular
communications [22], the observation at time t in the ith sensor is

yi,t = 10 log10

(
η + P0

γ

)
+ gi,t (dB), i = 1, . . . ,N, (28)
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
tracking and dynamic optimization, Digital Signal Process. (2006), doi:10.1016/j.dsp.2006.09.003
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Table 7
Instance of the CRPF algorithm. We use notation x̂

(i)
k,t

for the kth ele-

ment of x̂(i)
t

1. Initialization:
E0 � {x ∈ R

4: xk ∈ [−L
2 ,+L

2 ], k = 1, . . . ,4},
x(i)
t ∼ U(E0), i = 1, . . . ,M .

2. Recursive steps: the wps at time t is Ωt = {x(i)
0:t ,C

(i)
t }M

i=1
Selection:

for i = 1, . . . ,M , let R
(i)
t+1 = λC

(i)
t + ‖yt+1 − y(Ax(i)

t )‖.

Obtain Ω̂t = {x̂(i)
0:t , Ĉ

(i)
t }M

i=1.
Propagation: choose a radius ρCR > 0.
For i = 1, . . . ,M ,

EρCR (x̂(i)
t ) � {x ∈ R

4: xk ∈ [x̂(i)
k,t

− ρCR, x̂
(i)
k,t

+ ρCR]}.
x(i)
t+1 ∼ U(EρCR (x̂(i)

t )).

x(i)
0:t+1 = {x̂(i)

0:t ,x(i)
t+1} and C

(i)
t+1 = λĈ

(i)
t + ‖yt+1 − y(x(i)

t+1)‖.
3. Estimation:

let π
(i)
t+1 ∝ μ(C

(i)
t+1), i = 1, . . . ,M , be a pmf.

xmean
t+1 = ∑M

i=1 π
(i)
t+1x(i)

t+1.

where P0 is the transmitted power, γ > 0 determines the rate of the (exponential) power decay, η > 0 yields the
sensitivity of the sensor (signals with power less than 10 log10(η) dB cannot be adequately measured), and gi,t is
Gaussian observational noise with pdf N(gi,t |0, σ 2

g ). We assume the real parameters P0, γ and η are known, and
use yt = [y1,t , . . . , yN,t ]� ∈ R

N to denote the whole collection of observations at time t . The goal is to recursively
estimate xt from the sequence y1:t .

4.2. Algorithms

We have tested a CRPF algorithm for maneuvering target tracking that results from the following choices and
assumptions (see Table 7 for details).

(i) The monitored region is a square of side L (m) centered at the origin. The initial particles are sampled uniformly
in this area.

(ii) The cost function is additive,

C(x0:t ,y1:t ) = λC(x0:t−1,y1:t−1) + �C(xt ,yt ) (29)

with increments defined as

�C
(
x(i)
t ,yt

)
�

∥∥yt − y(x(i)
t )

∥∥, (30)

where x(i)
t =

[
r(i)
t

v(i)
t

]
, ‖x − z‖ is the Euclidean distance between vectors x and z, and y(x(i)

t ) is an N × 1 vector

with kth component yk(x
(i)
t ) = 10 log10(η + P0/‖r(i)

t − rk‖γ ).
(iii) The risk function is a prediction of the cost,

R
(
C

(i)
t ,x(i)

t ,yt+1
) = λC

(i)
t + �C

(
Ax(i)

t ,yt+1
)
. (31)

(iv) The generating function is [12]

μ(C
(i)
t ) = 1

(C
(i)
t − mink∈{1,...,M}{C(k)

t } + 1/M)3
, i = 1, . . . ,M. (32)

(v) Particles are propagated using a uniform pdf. We have chosen this density to illustrate how the algorithm works
when there is no match between the propagation function and the true statistics. The uniform density on a set E

is denoted as U(E).
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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Table 8
Auxiliary particle filter (APF)

1. Initialization: the same as in the SBF.

2. Recursive step: given the wps {x(i)
t−1,w

(i)
t−1}M

i=1,
(a) draw auxiliary indices


(i) ∼ p(
) = w
(
)
t−1p(yt |h(x(
)

t )), i = 1, . . . ,M ,

where h(x(
)
t−1) is an estimate of xt a priori computed from x(
)

t−1,
(b) draw new particles

x(i)
t ∼ p(xt |x(
(i))

t−1 ), i = 1, . . . ,M , and
(c) assign importance weights proportional to the likelihood ratio,

w
(i)
t ∝ p(yt |x(i)

t )/p(yt |h(x(
(i))
t−1 )).

(vi) Selection is performed at each time step. For the simulations, we have considered both global and local selection
schemes, according to Tables 5 and 6, respectively, with one offspring per particle (i.e., Ḿ = M).

(vii) A mean estimator of the state, according to (13). The (heuristic) reason for using (13), instead of the straightfor-
ward (12), is that the resulting estimate of the target trajectory, x̂mean

0:t , is usually smoother than x̂min
0:t .

For comparison purposes, we have also tackled the same problem with the standard boostrap filter (SBF) [6], the
auxiliary particle filter (APF) [23] the sequential importance sampling with resampling (SISR) algorithm [8], and the
accelerated random search (ARS) algorithm [18].

The general SBF algorithm was outlined in Table 1. We note that, for the problem at hand, both the state conditional
pdf, p(xt |xt−1), and the likelihood, p(yt |xt ), are Gaussian (in particular, this implies that particles are drawn from a
mixture Gaussian density). The normalized weights are used to approximate the minimum mean square error (MMSE)
estimate of the state at time t , i.e., x̂mmse

t = ∑M
i=1 w

(i)
t x(i)

t .
The APF algorithm, outlined in Table 8, is a more efficient version of the SBF. An important feature of the APF

algorithm is the exploration of the a posteriori probability of the state, given the new observation, before actually gener-
ating new particles. It is achieved by sampling the auxiliary indices, denoted 
(i) in Table 8, according to probabilities
that depend on the predictive likelihood, p(yt |h(x(i)

t−1)), and can be seen as intuitively equivalent to the selection of
new particles depending on their risks, as carried out in general CRPF algorithms. However, the procedure for the com-
putation of the costs, and associated probabilities π

(i)
t , in CRPF can be much simpler than the weight calculation in

the APF and produce quantitatively very different results. E.g., in a system with Gaussian noise processes, the typical
computation of the weight in an APF has the form w

(i)
t ∝ exp{‖yt − fy(xt )‖2 − ‖yt − fy(h(xt−1))‖2}, which reduces

to π
(i)
t ∝ μ(‖yt − fy(xt )‖2) in a CRPF algorithm (assuming we choose such a quadratic form for the cost function),

with freedom to choose function μ. The sampling step is also more flexible in CRPF than in the standard APF.
The SISR algorithm details are given in Table 3. We use it in its simplest form, with the importance func-

tion being equal to the state conditional density, i.e., q(xt ) = p(xt |xt−1). Thus, the importance weights become
w

(i)
t ∝ w

(i)
t−1p(yt |x(i)

t−1). Multinomial resampling is carried out whenever the estimated effective sample size M̂eff =
1/

∑M
i=1 w

(i)
t

2
is less than M/2 [8]. The MMSE estimate of xt is approximated in the same way as with the SBF.

The ARS algorithm is an iterative Monte Carlo optimization method, suitable for searching the global optimum of
a cost function in a compact set. Here, we use it to provide a benchmark for the performance of the CRPF technique
in minimizing the incremental cost at each time step. The specific algorithm for solving minx �C(x,yt ) is described
in Table 9. For each t , it is initialized with the true target location (�C(xt ,yt ) does not depend on the target velocity)
and then iterated M times. The algorithm adjustable parameters are the maximum and minimum radii, ρmax and ρmin,
respectively, and the contraction factor c > 1. The output is an estimate of the target location, r[M], that minimizes the
incremental cost.

4.3. Numerical results

For the computer simulations, we have assumed that N = 16 sensors are uniformly deployed on a square area of
side L = √

4 × 106 m centered at the origin. The background noise power is η = 10−7 (i.e., the sensitivity is −70 dB),
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
tracking and dynamic optimization, Digital Signal Process. (2006), doi:10.1016/j.dsp.2006.09.003
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Table 9
Accelerated random search algorithm

1. Initialization:
let r[0] = rt , and choose c > 1 and ρmax > ρmin > 0.
Set ρ[1] = ρmax.

2. Iterative step: given r[n−1]:
draw ŕ ∼ U(S(r[n−1], ρ[n])),

where S(r[n−1], ρ[n]) = {r ∈ R
2: ‖r − r[n−1]‖ � ρ[n]}.

If ‖yt − y(ŕ)‖ < ‖yt − y(r[n−1])‖,
then r[n] = ŕ, ρ[n+1] = ρmax,
else r[n] = ŕ[n−1], ρ[n+1] = ρ[n]/c.

If ρ[n+1] < ρmin then ρ[n+1] = ρmax.

Table 10
Percentage of successful tracks, averaged over 200 independent simulations (for each value of M)

SBF APF SISR ARS CRPF (global) CRPF (local)

M = 100 96.0 97.5 95.5 96.0 98.5 100
M = 200 98.5 100 96.0 90.5 98.5 99.0
M = 400 99.5 100 100 88.0 100 100

the transmitted power is P0 = 1, the attenuation exponent is γ = 2, the variance of the power measurements is σ 2
g = 1,

the observation period is T = 0.5 s and the covariance of the state noise is QQ� (i.e., σ 2
u = 1). The memory factor of

the CRPF algorithm is set to λ = 0.9 and the radius used for uniform propagation of the particles is ρCR = 15 m. The
SBF, the APF and the SISR algorithm are completely specified by the model parameters, and for the ARS procedure
we have chosen ρmax = 30 m, ρmin = 10−4 m, and c = 2.

We first study the capability of the particle filters to stay locked to the target trajectory. To do this, we define that
a track has been successful when mean absolute error (MAE) between the true and estimated trajectories is smaller
than 50 m, i.e.,

MAE(r̂ti :tf ) = 1

1 + tf − ti

tf∑
t=ti

‖r̂t − rt‖ < 50 m, (33)

where r̂0:t is the trajectory estimate and [ti , tf ] is the interval where the MAE is calculated (if the target leaves the
monitored area at time Tf , we set [ti , tf ] = [� 4

5Tf �, Tf ], where �z� denotes the integer part of the positive real
number z). We have run 200 independent simulations (in each simulation we have used the six algorithms, SBF, APF,
SISR, ARS, CRPF with global selection and CRPF with local selection, to track the same target) and counted the
number of successful tracks for each technique.

Table 10 shows the results obtained when M = 100, 200, and 400. It is observed that the five particle filters attain
a very similar performance, with success rates between 95.5% (of the SISR algorithm with M = 100) and 100%. The
two CRPF algorithms, both with global and local selection, are competitive with the conventional particle filters that
exploit a full knowledge of the statistics of the state and observation processes. It is interesting to note that the ARS
method yields the poorest performance (despite being initialized with the true target position), with a success rate that
decreases with the number of iterations. The reason is that the optimization of (30) does not lead to the minimization
of the MAE.

Using only the simulation trials that yielded successful tracks, we have computed the average values of the MAE
and the mean incremental cost attained by each algorithm for M = 100, 200, and 400. The latter magnitude is com-
puted, at time t , as

�CPF
t =

M∑
i=1

�C
(
x(i)
t ,yt

)
w

(i)
t , (34)

�CCRPF
t =

M∑
�C

(
x(i)
t ,yt

) μ(�C
(i)
t )∑M

μ(�C
(k)

)
, (35)
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Fig. 1. Left: Average, over the successful tracks only, of the MAE. Right: Average, over the successful tracks only, of the mean cost increments.

for conventional PF algorithms and CRPF methods, respectively. For the ARS techniques, we have computed
�C(r[M]

t ,yt ), i.e., the incremental cost of the last approximation provided by the iterative procedure.
Figure 1 shows the obtained results. The conventional particle filters yield the best performance in terms of MAE,

but the worst in terms of the mean incremental cost, �Ct . On the contrary, the ARS procedure attains very low values
of �Ct but a very poor MAE (that even grows with M). The CRPF techniques provide a trade off. It is remarkable
that, for the algorithm with local selection, both the MAE and the average cost decrease with M . The performance
of the CRPF method with global selection is approximately midway between the conventional particle filters and the
ARS algorithm in the two plots.

Figure 2 shows the “risk improvement” attained through selection, as predicted by Theorems 2 and 3. Specifically,

the plot depicts the difference R̄t − ¯̂
Rt (see (20) and (21)) for a sample simulation of the CRPF algorithms with global

and local selection. We see that the risk difference is positive for the whole simulation period.
It is also illustrative to study the robustness of the algorithms to mismatches between the assumed dynamical

model and the true statistics of the state signal. To do this, we have generated target trajectories according to the
model-switching equation{

kt ∼ p(kt |kt−1),

xt = Akt xt−1 + Qkt ut ,
(36)

where kt ∈ {1,2,3} is the state of a Markov chain with transition probabilities given by (read κij = p(kt = i|kt−1 = j))

K =
[

κ11 = 0.90, κ12 = 0.90, κ13 = 0.90
κ21 = 0.01, κ22 = 0.01, κ23 = 0.09,

κ31 = 0.09, κ32 = 0.09, κ33 = 0.01

]
, (37)

A1 = A3 = A, A2 =
⎡
⎢⎣

1 0 T 0
0 1 0 T

0 0 cos(π/3) 0
0 0 0 sin(π/3)

⎤
⎥⎦ , (38)

Q1 = Q2 = Q and Q3 = √
20Q.

Table 11 shows the percentages of successful tracks achieved by the tracking algorithms when the target dynamics
follow (36). Note that, in this case, the conventional particle filters yield very poor results because the probabilistic
assumptions on which they are built do not match the actual statistics of the state process, xt . The CRPF methods, on
the other hand, attain approximately the same proportion of successful tracks as they did without a model mismatch,
because they do not rely on specific probabilistic assumptions.

Finally, Fig. 3 shows the average value of the MAE for the different algorithms, computed using only the successful
tracks. Even though lost tracks are discarded, the results are fairly different from those of Fig. 1 (left). In particular, the
performance of the conventional particle filters degrades significantly and, as a result, the CRPF algorithm with global
selection attains a lower MAE than the SBF, APF, and SISR algorithms when M = 100 and 200. The performance of
CRPF with local selection is approximately the same as in the experiment of Fig. 1 (left).
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
tracking and dynamic optimization, Digital Signal Process. (2006), doi:10.1016/j.dsp.2006.09.003
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Fig. 2. Difference between the mean risk before propagation and
after propagation in the CRPF algorithm with global selection and
local selection. M = 400 particles.

Fig. 3. Average, over the successful tracks only, of the MAE. The
state equation used to generate the target trajectories in the simula-
tions was (36), which is mismatched with the probabilistic model
used to derive the SBF, APF, and SISR algorithms.

Table 11
Percentage of successful tracks, averaged over 200 independent simulations (for each value of M). The state equation used to generate the target
trajectories in the simulations was (36), which is mismatched with the probabilistic model used to derive the SBF, APF and SISR algorithms

SBF APF SISR ARS CRPF (global) CRPF (local)

M = 100 26.5 33.5 14.5 96.0 97.0 99.5
M = 200 46.5 54.0 29.0 94.0 97.5 100
M = 400 47.0 59.0 31.0 92.5 100 100

5. Application example: The Hartman 3 problem

5.1. Problem statement

The Hartman 3 (H3) problem [14] is a typical optimization problem that consists of the minimization of an ob-
jective function with a three-dimensional argument and has been recently proposed as part of a benchmark for global
optimization algorithms [15]. In order to test the proposed CRPF algorithm, we consider a sequence of H3 problems,
specifically (we term the objective function as �C for convenience)

min
xt

{
�C(xt ,yt ) �

4∑
i=1

ci,t exp

{
−

3∑
j=1

aij,t (xj,t − pij )

}}
, t = 1,2, . . . , (39)

where xt = [x1,t , x2,t , x3,t ]� ∈ R
3, with 0 � xj � 1, ∀j , yt = [c1,t , . . . , c4,t , a11,t , . . . , a44,t ]� ∈ R

16 and the constant
pij is the element in the i-row and j th column of matrix

P =
⎡
⎢⎣

0.36890 0.11700 0.2673
0.46990 0.43870 0.7470
0.10910 0.87320 0.5547
0.03815 0.57430 0.8828

⎤
⎥⎦ . (40)

The time varying parameters collected in yt can be decomposed as

ct = [c1,t , . . . , c4,t ]� and At =
⎡
⎣a11,t · · · a14,t

...
. . .

...

a41,t · · · a44,t

⎤
⎦ ,

which evolve according to
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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Table 12
Instance of the CRPF algorithm for solving the sequence of H3 prob-
lems. It is assumed that the algorithm has no memory, λ = 0, and that
the state transition function is the identity, fx(x) = x

1. Initialization: for i = 1, . . . ,M

E1 � [0,1]3, x(i)
1 ∼ U(E1), and C

(i)
1 = �C(x(i)

t ,y1).

First solution: xmin
1 = x(i0)

1 where i0 = arg mink∈{1,...,M} C
(k)
1 .

2. Recursive steps: the wps at time t is Ωt = {x(i)
t ,C

(i)
t }M

i=1.
Selection:

for i = 1, . . . ,M , let R
(i)
t+1 = �C(x(i)

t ,yt+1).

Obtain Ω̂t = {x̂(i)
t , Ĉ

(i)
t }M

i=1 by local selection.
Propagation: (choose a constant 0 < ρCR < 1)
For i = 1, . . . ,M and j = 1,2,3,

EρCR (x̂
(i)
j,t

) � [max(0, x̂
(i)
j,t

− ρCR),min(1, x̂
(i)
j,t

+ ρCR)].
x
(i)
j,t+1 ∼ U(EρCR (x̂

(i)
j,t

)).

C
(i)
t+1 = �C(x(i)

t+1,yt+1).
3. Estimation:

t th solution: xmin
t = x(i0)

t where i0 = arg mink∈{1,...,M} C
(k)
t .

ct = ct−1 + c̃, (41)

At = At−1 + Ã, (42)

for t = 2,3, . . . , with

c1 = [1.199,1.001,3.398,3.399]�, c̃ = 10−3 × [−1,1,−2,−1]�, (43)

and

A1 =
⎡
⎢⎣

2.602 13.980 10.100
0.100 13.980 54.900
3.398 6.020 10.100
0.100 6.020 54.900

⎤
⎥⎦ , Ã = 10−1 ×

⎡
⎢⎣

0.02 −0.20 1.00
0.00 −0.20 −1.00

−0.02 0.20 1.00
0.00 0.20 −1.00

⎤
⎥⎦ . (44)

The above equations yield the exact form of the H3 problem in [15] for t = 80.

5.2. Algorithms

Consider the discrete-time dynamical system

xt = fx(xt−1), (45)

yt = fy(yt−1), t = 2,3, . . . , (46)

where fx is unknown and fy is defined by (41) and (42) together. If we apply the CRPF algorithm outlined in Table 12
to this system, then we obtain approximate solutions �C(xmin

t ,yt ), t = 1,2, . . . , to the sequence of problems (39). For
our simulations, the constant radius ρCR, that appears in the propagation step of Table 12, has been set to ρCR = 0.01.

For comparison, we have also applied the ARS algorithm to solve the same sequence of problems. For t = 1, an
initial approximation is chosen uniformly in [0,1]3, and then the ARS algorithm is applied with maximum radius
ρmax = 1, minimum radius ρmin = 10−7 and contraction factor c = 2. For t > 1, the same parameters are used but the
initial approximation is the last solution obtained at time t − 1. For each t , the algorithm is iterated M times.

5.3. Numerical results

We have run the CRPF and ARS algorithms 20 times independently (with random initializations) for the sequence
of H3 problems from t = 1 to 80, both with M = 1000 and 5000. Recall that M denotes the number of particles drawn
at each time t by the CRPF method and the number of iterations of the ARS technique (therefore, both algorithms
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
tracking and dynamic optimization, Digital Signal Process. (2006), doi:10.1016/j.dsp.2006.09.003
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Fig. 4. Value of the cost function �C(xt ,yt ), defined by (39), at the
minimizers output by the ARS and CRPF algorithms with M = 1000
and 5000.

Fig. 5. Excess value of the cost function, computed according to (49),
at the minimizers output by the CRPF algorithm with M = 1000 and
5000 particles compared with the approximations provided by the
ARS technique with M = 1000 and 5000 iterations, respectively.

draw M three-dimensional random vectors for each t). Let us denote as x̂crpf
1:80(k,M) and x̂ars

1:80(k,M) the sequences of
minimizers output by the CRPF and ARS algorithms, respectively, as a result of the kth simulation with M particles.

Figure 4 shows the average value of the cost functions at the minimizers for both algorithms, i.e.,

�CCRPF(t,M) = 1

20

20∑
k=1

�C
(
x̂crpf
t (k,M),yt

)
, (47)

�CARS(t,M) = 1

20

20∑
k=1

�C
(
x̂ars
t (k,M),yt

)
, (48)

for t = 1,2, . . . ,80 and M = 1000,5000. The curves of the two ARS procedures differ significantly only for t = 1,
and provide a good benchmark for the CRPF techniques. In particular, we observe that the latter need a convergence
period (of 10 to 15 time steps) before they produce solutions that overlap with those of the ARS techniques. After this
period, the approximate minima are graphically indistinguishable from those computed with the iterative methods.
We also observe a clear improvement (for small t) of the solutions provided by the CRPF algorithm with M = 5000
compared to those obtained with only M = 1000 particles.

Further insight on the performance of the CRPF algorithm can be drawn by looking at the average “excess” value
of �C(x̂crpf

t (k,M),yt ) compared to �C(x̂ars
t (k,M),yt ), i.e.,

e(t,M) = 1

20

20∑
k=1

�C
(
x̂crpf
t (k,M),yt

) − �C
(
x̂ars
t (k,M),yt

)
, t = 1, . . . ,80. (49)

Figure 5 shows curve (49) for M = 1000 and 5000. We observe that the difference between the minima approx-
imated by the CRPF and ARS algorithms is small, and clearly decreasing with t . A significant improvement in the
solutions is obtained when increasing the number of particles from M = 1000 to 5000.

The computer simulations have shown that a more accurate solution of the sequence of problems (39) is achieved
using the ARS algorithm. We should be aware, however, that the ARS procedure is inherently iterative and cannot be
parallelized (the nth approximation of the minimizer at time t requires a comparison with the (n−1)th approximation,
hence the M approximations are computed in a strictly serial fashion). Thus, it is an appealing methodology for batch
optimization, but it is not well suited for online applications with stringent time constraints. On the other hand, the
CRPF algorithm is particularly suitable for online optimization because the M candidate approximations at time t

can be drawn in parallel. Also, their propagation to time t + 1 requires a minimal amount of interaction if the local
selection procedure is employed (as it has been done in our simulations).
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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6. Conclusions

We have reviewed the recently proposed CRPF methodology and introduced some generalizations that enable the
derivation of the most common conventional SMC algorithms (namely, the standard bootstrap filter and the sequential
importance sampling-resampling algorithm) within the new framework, as well as a simple analysis of convergence of
the particle propagation step. Then, we have investigated the issue of particle selection. As a result, we have introduced
the notion of proper selection for CRPF algorithms and analyzed a new procedure, termed local selection, that is
suitable for implementation with parallel computing devices. In this way, CRPF methods can overcome one of the
major practical limitations of conventional particle filters, namely the difficulty for the parallelization of resampling
algorithms.

Finally, we have demonstrated the performance of CRPF algorithms by way of two application examples: the track-
ing of a maneuvering target using a sensor network and a dynamic optimization problem derived from the standard
Hartman 3 (H3) problem. We have shown that the CRPF algorithms can perform the target tracking task effectively
and are more robust to model mismatches than conventional particle filters. For the dynamic H3 optimization prob-
lem, the CRPF has been shown to provide a fast online algorithm with a performance competitive with the accelerated
random search technique.

Appendix A. Proof of Theorem 1

Consider some number δ > 0 and the sequence of Bernoulli random variables θ(m) ∈ {1,0}, m = 1, . . . ,M , defined
as

• θ(m) = 1, if �C
(m)
t ∈ It (δ),

• θ(m) = 0, otherwise.

Obviously,
M∑

m=1

θ(m) = ∣∣IM
t (δ)

∣∣ (A.1)

is the number of particles with an incremental cost less than �C∗
t + δ.

The “probability of success” in each Bernoulli trial is

pθ = probability{θ(m) = 1} = probability
{�C

(i)
t ∈ It (δ)

}
(A.2)

for arbitrary i. Using the overall pdf that generates the particles through the selection and propagation steps, ps
t , we

can write

pθ =
∫

Xt (δ)

ps
t

(
x
∣∣{x̂(k)

t−1

}M

k=1

)
dx > 0, (A.3)

where

Xt (δ) �
{
x ∈ Xt : �C(x,yt ) ∈ It (δ)

}
. (A.4)

Note that Xt (δ) �= ∅ because of the continuity of �C at x∗
t and pθ > 0 because of the definition of Xt . If we choose any

x′ ∈Xt (δ), with pdf p′ = ps
t (x

′|{x̂(k)
t }Mk=1) (p′ > 0 exists [24, Corollary 4.10]) and δ sufficiently small, then pθ = δp′.

Since the mean and variance of θ(m) are E[θ(m)] = pθ and Var[θ(m)] = pθ(1 − pθ) < ∞, we can use the strong
law of large numbers [25] to obtain

lim
M→∞

1

M

M∑
i=1

θ(m) = pθ (a.s.) (A.5)

and, as a consequence,

lim
M→∞

M∑
θ(m) = lim

M→∞Mpθ . (A.6)
Please cite this article as: J. Míguez, Analysis of selection methods for cost-reference particle filtering with applications to maneuvering target
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If we now let δ depend on the number of particles, M , as δM � M−ψ , 0 < ψ < 1, we arrive at

lim
M→∞Mpθ = lim

M→∞MδMp′ � lim
M→∞M1−ψp′ = +∞, (A.7)

and, considering (A.1), (A.6), and (A.7) together,

lim
M→∞

∣∣IM
t (δM)

∣∣ = ∞ (a.s.). � (A.8)

Appendix B. Proof of Theorem 2

Let us consider the initial wps Ωt = {x(i)
0:t ,R

(i)
t }Ḿi=1, with associated pmf ς

(i)
t ∝ μ(R

(i)
t ), and the selected wps

Ω̂t = {x̂(i)
0:t , R̂

(i)
t }Mi=1, with associated pmf ς̂

(i)
t ∝ μ(R̂

(i)
t ). Ω̂t is obtained by sampling the pmf {ς(i)

t }Ḿi=1 M times. The
goal is to prove that

lim
M→∞ R̄t − ¯̂

Rt = lim
M→∞

Ḿ∑
i=1

ς
(i)
t R

(i)
t −

M∑
l=1

ς̂
(l)
t R̂

(l)
t � 0 (i.p.). (B.1)

Let us construct the noninvertible mapping α : {1, . . . ,M} → {1, . . . , Ḿ} such that α(j) = i ⇔ x̂(j)

0:t = x(i)
0:t . Using

this mapping, we further define sets of the form Ai � {j ∈ {1, . . . ,M}: α(j) = i}, i = 1, . . . , Ḿ . We observe that |Ai |
is the number of offsprings due to particle x(i)

0:t .
Using the above notation, we conveniently rewrite ¯̂

Rt in terms of the original risks,

¯̂
Rt =

M∑
l=1

ς̂
(l)
t R̂

(l)
t =

Ḿ∑
i=1

∑
j∈Ai

ς̂
(j)
t R̂

(j)
t =

Ḿ∑
i=1

R
(i)
t

∑
j∈Ai

ς̂
(j)
t (B.2)

=
Ḿ∑
i=1

R
(i)
t

∑
j∈Ai

μ(R̂
(j)
t )∑M

k=1 μ(R̂
(k)
t )

=
Ḿ∑
i=1

R
(i)
t μ(R

(i)
t )

|Ai |∑M
k=1 μ(R̂

(k)
t )

(B.3)

=
Ḿ∑
i=1

R
(i)
t μ(R

(i)
t )

|Ai |∑Ḿ
k=1 |Ak|μ(R

(k)
t )

. (B.4)

In order to relate (B.4) to R̄t we need to bring the original pmf into the equality. With this aim, let us divide and
multiply by M in (B.4),

¯̂
Rt =

Ḿ∑
i=1

R
(i)
t

|Ai |
M

μ(R
(i)
t )∑Ḿ

k=1
|Ak |
M

μ(R
(k)
t )

. (B.5)

According to the weak law of large numbers [16], limM→∞ |Ai |/M = ς
(i)
t i.p., hence we write

lim
M→∞

¯̂
Rt =

Ḿ∑
i=1

R
(i)
t ς

(i)
t η

(i)
t (i.p.), (B.6)

where η
(i)
t = μ(R

(i)
t )/

∑Ḿ
k=1 ς

(k)
t μ(R

(k)
t ). We further observe that κ

(i)
t = ς

(i)
t η

(i)
t , i = 1, . . . , Ḿ , is a pmf, because

κ
(i)
t � 0,

Ḿ∑
i=1

κ
(i)
t =

Ḿ∑
i=1

ς
(i)
t η

(i)
t =

Ḿ∑
i=1

μ(R
(i)
t )∑Ḿ

k=1 μ(R
(k)
t )

μ(R
(i)
t )∑Ḿ

k=1 ς
(k)
t μ(R

(k)
t )

(B.7)

and substituting ς
(k)
t = μ(R

(k)
t )/

∑Ḿ
μ(R

(l)
t ) into (B.7) immediately yields

∑Ḿ
κ

(i)
t = 1.
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A closer look at κ
(i)
t brings the proof to a conclusion. Indeed, given two particles x(i)

0:t and x(j)

0:t such that R
(i)
t � R

(j)
t

it follows that μ(R
(i)
t ) � μ(R

(j)
t ) and, as a consequence, η(i)

t � η
(j)
t . A comparison of the probability mass ratio under

the original probability measure, ςt , and the corrected probability measure, κt , yields

κ
(i)
t

κ
(j)
t

= ς
(i)
t η

(i)
t

ς
(j)
t η

(j)
t

� ς
(i)
t

ς
(j)
t

(B.8)

and, as a consequence of (B.6), (B.8) and the fact that both κ
(i)
t and ς

(i)
t are pmf’s, we obtain

lim
M→∞

¯̂
Rt = lim

M→∞

M∑
i=1

R̂
(i)
t ς̂

(i)
t =

Ḿ∑
i=1

R
(i)
t κ

(i)
t �

Ḿ∑
i=1

R
(i)
t ς

(i)
t = R̄t (i.p.). � (B.9)

Appendix C. Proof of Theorem 3

Let us construct the discrete-time random process

z0 = 0, zk = zk−1 + (
R

(k)
t − R̂

(k)
t

)
, k ∈ N. (C.1)

It is readily seen that limM→∞
∑M

i=1 R
(i)
t − R̂

(i)
t = limk→∞ zk . Furthermore, we can decompose process {zk}k∈N into

two sub-processes {z+
k }k∈N and {z−

k }k∈N, such that limk→∞ zk = limk→∞ z+
k − z−

k , if we let

z+
0 = 0, z−

0 = 0, (C.2)

z+
k = z+

k−1 + ∣∣R(l+k )

t − R
(l+k −1)

t

∣∣ξ (k)+ , (C.3)

z−
k = z−

k−1 + ∣∣R(l+k )

t − R
(l+k −1)

t

∣∣ξ (k)− , (C.4)

where l+k (correspondingly, l−k ) is the kth index in A+
M (correspondingly, A−

M ), while ξ (k)+ and ξ (k)− are Bernoulli
random variables (r.v.’s) with parameters

φ(k)+ = μ(R
(l+k −1)

t )

μ(R
(l+k −1)

t ) + μ(R
(l+k )

t )

, φ(k)− = μ(R
(l−k −1)

t )

μ(R
(l−k −1)

t ) + μ(R
(l−k )

t )

, (C.5)

respectively. We note that, by construction of sets A+
M and A−

M , φ(k)+ > 1/2 and φ(k)− < 1/2 for all k. If we take

φ+ = min
k∈N

{φ(k)+}, φ− = max
k∈N

{φ(k)−}, (C.6)

then we can construct the auxiliary processes

s+
0 = 0, s−

0 � 0, (C.7)

s+
k = s+

k−1 + ∣∣R(l+k )

t − R
(l+k −1)

t

∣∣ζ (k)+ , (C.8)

s−
k = s−

k−1 + ∣∣R(l+k )

t − R
(l+k −1)

t

∣∣ζ (k)− , (C.9)

where {ζ (k)+}k∈N are i.i.d. Bernoulli r.v.’s with parameter φ+ and {ζ (k)−}k∈N are i.i.d. Bernoulli r.v.’s with parame-
ter φ−. Since 1/2 > φ− � φ(k)− and 1/2 < φ+ � φ(k)+ for all k, and assuming (R1), (R2), and (R3), it follows that
limk→∞ z+

k > limk→∞ s+
k and limk→∞ z−

k < limk→∞ s−
k i.p. and, as a consequence,

lim
k→∞ zk > lim

k→∞ sk (i.p.). (C.10)

Moreover, by construction of process {sk}, and using (R2) and (R3), we can calculate

lim
k→∞ sk = dR(φ+ − φ−) lim

M→∞
∣∣A+

M

∣∣ = +∞ (i.p.), (C.11)

hence2

2 Statements of the type limn→∞ a(n) = ∞ (i.p.) should be read as limn→∞ probability{a(n) � B} = 0 for any finite constant B .
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lim
M→∞

M∑
i=1

R
(i)
t − R̂

(i)
t = lim

k→∞ zk = +∞ (i.p.). (C.12)

Assumption (R4) enables us to prove that

lim
M→∞

M∑
l=1

μ(R
(l)
t ) − μ(R̂

(l)
t ) = −∞ (i.p.) (C.13)

using a similar procedure.
In the sequel we use (C.12) and (C.13) to complete to proof. Consider two sets of indices,

K0 � {k1, k2, . . . , kn}, n < M, (C.14)

K1 � {kn+1, kn+2, . . . , kn+M}, (C.15)

such that K0 ∪ K1 = {1,2, . . . ,M}, K0 ∩ K1 = ∅ and, ∀i ∈ K1, R
(i)
t = R̂

(i)
t . For an arbitrary set of indices K , let us

further define

R̄t (K) �
∑
i∈K

R
(i)
t

μ(R
(i)
t )∑

l∈K μ(R
(l)
t )

, (C.16)

p(K) �
∑

i∈K μ(R
(i)
t )∑M

l=1 μ(R
(l)
t )

, (C.17)

as well as ¯̂
Rt(K) and p̂(K), obviously substituting R

(·)
t by R̂

(·)
t in the equations above. It is apparent from the definition

of K1 that R̄t (K1) = ¯̂
Rt(K1). Hence, using the notation just introduced, we can write

R̄t − ¯̂
Rt = p(K0)R̄t (K0) − p̂(K0)

¯̂
Rt(K0) + [

p(K1) − p̂(K1)
]
R̄t (K1). (C.18)

On the basis of (C.12), (C.13) and the regularity assumption (R1) and (R2), for sufficiently large n and M we can

choose sets K0 and K1 such that R̄t (K0) − ¯̂
Rt(K0) � 0 and R̄t (K1) − ¯̂

Rt(K0) � 0. Also, we have p(K1) � p̂(K1)

(because (C.12) ensures
∑M

l=1 R
(l)
t �

∑M
l=1 R̂

(l)
t for sufficiently large M) and, as a consequence, p̂(K0) � p(K0).

Also note that p(K1) − p̂(K1) = p̂(K0) − p(K0). Therefore,

R̄t − ¯̂
Rt = p(K0)R̄t (K0) − p̂(K0)

¯̂
Rt(K0) + [

p̂(K0) − p(K0)
]
R̄t (K1) (C.19)

�
[
p(K0) − p̂(K0)

] ¯̂
Rt(K0) + [

p̂(K0) − p(K0)
]
R̄t (K1) (C.20)

= [
p̂(K0) − p(K0)

][
R̄t (K1) − ¯̂

Rt(K0)
]
� 0 (C.21)

for sufficiently large M (with convergence i.p.). �
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