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Abstract

We investigate a recently proposed method for on-line parameter estimation and synchronization in chaotic systems. This novel technique
has been shown effective to estimate a single unknown parameter of a primary chaotic system with known functional form that is only partially
observed through a scalar time series. It works by periodically updating the parameter of interest in a secondary system, with the same functional
form as the primary one but no explicit coupling between their dynamic variables, in order to minimize a suitably defined cost function. In this
paper, we review the basics of the method, and investigate its robustness and new extensions. In particular, we study the performance of the novel
technique in the presence of noise (either observational, i.e., an additive contamination of the observed time series, or dynamical, i.e., a random
perturbation of the system dynamics) and when there is a mismatch between the primary and secondary systems. Numerical results, including
comparisons with other techniques, are presented. Finally, we investigate the extension of the original method to perform the estimation of two
unknown parameters and illustrate its effectiveness by means of computer simulations.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in science and engineering reduce to
adjusting the parameters of a dynamical model in order to
match an observed time series. If we assume that (a) the
model is a replica of the system originating the observations,
except for the parameters to be adjusted, and (b) after a proper
selection of its adjustable parameter values the model dynamics
follows the observed time series closely, then the model
parameters are estimates of the real system parameters [1].

The methods proposed in the literature to address this
problem can be classified as either off-line or on-line
techniques. Off-line methods first collect a set of observations
(e.g., samples from the received time series) and then
process the complete set iteratively to produce a sequence
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of approximations to the values of the unknown parameters.
On-line techniques process the observations sequentially and
parameter estimates are computed recursively, i.e., existing
estimates are updated using only newly collected observations
instead of the complete set of data. Off-line algorithms are
computationally heavier, although often more accurate, and
unsuitable for applications in which the model system should
operate continuously.

Different procedures of both classes have been suggested.
The so-called multiple shooting methods [2,3] are off-line
techniques that address the estimation of the unknown fixed
parameters, as well as the values of the dynamic variables
of the chaotic system at a grid of sampling times, as
a boundary-value problem and have shown to be very
effective for several applications. However, they involve
the optimization of large dimensional cost functions (not
only the parameters are estimated) and can be complex
to implement compared to other methods. Some standard
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statistical procedures for off-line estimation have also been
proposed, including approximate maximum likelihood, least
squares and moment-matching procedures [4,5]. Some authors
have also extended classical Bayesian methods for sequential
(on-line) inference, including the extended Kalman filter [6]
and the unscented Kalman filter [7]. The latter has been shown
effective in some scenarios but, in general, these techniques
require several approximations, such as linearization and/or
time discretization, as well as the assumption that any random
perturbations (i.e., noise) be Gaussian with known mean and
variance.

More recently, it has been shown that the synchronization
properties of coupled chaotic systems can be advantageously
exploited to design simpler parameter estimation algorithms.
Assume the observed time series consists of a fraction of
the dynamic state of a primary chaotic system with known
functional form but some unknown parameters. The model,
which we will hereafter refer to as the secondary system,
is defined with the same equations, but the parameters that
are unknown in the primary system are adjustable in the
secondary one. Furthermore, the dynamic variables of both
systems are coupled through the observed time series in a
way that would ensure synchronization if their parameters were
matched. With this setup, joint synchronization and parameter
estimation can be attained [1,8–17]. This general approach
followed the work of Parlitz [1], who proposed an adaptive
control scheme driven by the synchronization error as a method
for parameter estimation, and it is appealing because only the
unknown parameters need to be estimated, which leads to lower
dimensional problems. Both off-line [8,13,16,17] and on-line
[1,9–12,14,15] techniques have been suggested. The latter are
simpler and enable the continuous operation of the secondary
system. The various techniques differ in the type of coupling
between the systems and the way the synchronization error is
defined. In all cases, the unknown parameters are handled as
time-varying magnitudes and suitable differential equations are
designed for them.

A more challenging problem arises when there is no
explicit coupling between the dynamic variables of the chaotic
systems, hence control over the secondary system must be
exercised by the adaptation of its adjustable parameters alone.
In [18] it was shown that if the time series consists of
the full state of the primary system and there is a single
parameter to be adjusted in the secondary system, identical
synchronization and parameter estimation can be achieved
(on-line) for certain types of systems. An alternative on-line
method was very recently introduced in [19] that enables the
estimation of a scalar parameter from the observation of a 1-
dimensional time series, instead of the full primary-system state
as in [18]. The key features of the technique in [19], compared
to other synchronization-based on-line methods, are the
following.

• It does not require an explicit coupling between the primary
and secondary system, which makes this method depart
clearly from all previous techniques except [18].

• It is aimed at the on-line minimization of cost functions
that involve n-th order derivatives (n > 1) of the time
series and the state variables of the secondary system.
As a consequence, they become explicit functions of the
adjustable parameters and can be handled analytically (with
certain approximations).

• The on-line minimization is carried out by a discrete-time
algorithm, while existing techniques handle the adjustable
parameters as continuous-time variables that evolve accord-
ing to adequately designed ordinary differential equations
(ODEs) [1,9–12,14,15]. Although they can often be cast into
ODEs by letting the time increments vanish, discrete-time
procedures are practically better suited for implementation
using digital computing devices. In the following, we re-
fer to the method of [19] as discrete-time recursive update
(DTRU).

In this paper, we review the basics of the DTRU method,
investigate its robustness in the presence of noise and introduce
some extensions. In particular, a formal problem statement and
a general description of the DTRU procedure, which accounts
for unknown parameter vectors with arbitrary dimension, is
given in Section 2. In Section 3, we use the well-known
Lorenz equations to numerically study the robustness of the
method in the presence of noise and mismatches between
the primary and secondary systems. By means of extensive
computer simulations, we demonstrate the performance of the
DTRU algorithm when: (a) there exist errors in the fixed (non-
adjustable) parameters of the secondary system with respect
to their counterparts in the primary one, (b) there is additive
white Gaussian noise contaminating the observed time series
and (c) the primary system is affected by dynamical noise
which is not accounted for in the secondary one. In Section 4,
we investigate the extension of the DTRU method to jointly
estimate two parameters. Specifically, we show procedures for
jointly estimating two parameters of both the Lorenz system
(using a 1-dimensional time series as input) and a higher
dimensional primary system built by diffusively coupling
two Lorenz subsystems with different parameter sets. Finally,
Section 5 is devoted to a brief discussion and concluding
remarks.

2. Problem statement and proposed method

Let

ẋ = f(x, p) (1)

represent the primary system with state variables x ∈ Rn , and
unknown parameters p ∈ Rm . Given the functional form of Eq.
(1), we can build the secondary system as

ẏ = f(y, q) (2)

where y ∈ Rn are the state variables and q ∈ Rm are
the parameters to be adjusted. The system in Eq. (2) is fully
observed, and we assume the ability to periodically update
the value of q. There is no coupling between the dynamical
variables of the primary and secondary systems, but the
observed time series h(x) : Rn

→ Rk , which consists of a
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known transformation of a subset of the dynamical variables in
Eq. (1), can be used for the update of q. The goal is to derive an
algorithm to adaptively adjust the secondary system parameters
until the system variables, and the parameters themselves,
converge to their counterparts in the primary system, i.e., both
y → x and q → p. In this way, identical synchronization
between both systems is achieved and the unknown parameters
of the primary system are estimated. With this aim, we revisit
the estimation method proposed in [19].

Parameter estimation and identical synchronization can be
jointly achieved through the minimization of a suitable cost
function, denoted as J (q, t). We consider functions of the form

J (q, t) =

∫ t

0
‖e(τ )‖aλ

(t−τ)
T dτ, (3)

where e(τ ) = h(x) − h(y) is an error signal, ‖ · ‖ denotes
vector norm, a ≥ 1, T is the adaptation period (i.e., we assume
that q can be updated every T time units) and 0 < λ < 1
is a forgetting factor that emphasizes recent observations over
older ones. Unless otherwise necessary to avoid ambiguities,
we omit the time dependence of the dynamic variables (x and
y) all through the paper. We note that, when the systems attain
identical synchronization (y → x), the error signal vanishes
(e(τ ) → 0) and, as a consequence, so does the cost function
(J (q, nT ) → 0). Since, in general, identical synchronization
can only be achieved when q → p, the minimizers in the
sequence

qn = arg min
q

{J (q, nT )}, n ∈ N, (4)

are legitimate estimates of p.
The practical applicability of this technique obviously

relies on a choice of J that is tractable for effective on-line
minimization. It will be shown, by way of the examples in
Sections 3 and 4, that it is advantageous to define the error
signal as a difference between (n-th order) derivatives of the
dynamic variables, e.g., e(τ ) = ẋ − ẏ for a full-dimensional
time series, instead of the straightforward difference between
the state variables, x − y. The reason is that the time derivatives
of the dynamic variables of the secondary system, ẏ, are explicit
functions of the parameters to be adjusted, and this fact can be
exploited to analytically approximate the sequence of estimates
in Eq. (4) using a simple recursive procedure. We refer to this
general approach as discrete-time recursive update (DTRU) of
the parameters.

A drawback of defining J in this way is that minimizing
the mismatch between time derivatives of the state variables
does not necessarily lead to identical synchronization and,
although some preliminary results indicate that accurate
parameter estimation can be achieved even without identical
synchronization (i.e., by taking advantage of some form
of generalized synchronization), further work is needed in
this direction. Therefore, the value of the DTRU method
should be found in its simplicity and its appeal to practical
implementation using standard discrete-time (digital) devices.
3. Estimation of a single parameter in the presence of noise

In order to demonstrate the application of the DTRU method,
we assume a Lorenz primary system,

ẋ1 = −σ1(x1 − x2),

ẋ2 = R1x1 − x2 − x1x3,

ẋ3 = −b1x3 + x1x2,

(5)

where x = (x1, x2, x3) is the system dynamic state and
(σ1, R1, b1) is the complete parameter vector. We use the same
functional model for the secondary system, i.e.,

ẏ1 = −σ2(y1 − y2),

ẏ2 = R2 y1 − y2 − y1 y3,

ẏ3 = −b2 y3 + y1 y2,

(6)

where y = (y1, y2, y3) are the state variables and (σ2, R2, b2)

are the parameters.

3.1. Estimation of R1

Let us consider first the problem of estimating R1 when
(σ1, b1) are known. In this case, we set (σ2, b2) = (σ1, b1) from
the start and the vectors of unknown and adjustable parameters,
p and q in Eqs. (1) and (2), respectively, reduce to scalars,
p = R1 and q = R2. In order to obtain estimates of the
form (4), we wish to choose an error signal which is an explicit
function of R2. One such signal is e(τ ) = ẍ1 − ÿ1, hence we
assume that the observed time series is h(x1) = ẍ1

1 and define
the cost function

J (R2, nT ) =

∫ nT

0
λn−

τ
T e2(τ )dτ

=

∫ nT

0
λn−

τ
T (ẍ1 − ÿ1)

2dτ, (7)

to be minimized with respect to R2 (recall we omit the time
dependence of the dynamic variables). In particular, the n-th
update of the unknown parameter is carried out by solving

dJ

dR2
= −2

∫ nT

0
(ẍ1 − ÿ1)

dÿ1

dR2
λn−

τ
T dτ = 0 (8)

for R2. Clearly, there is a difficulty in the computation of
the derivative dÿ1/dR2 because all yi variables, i = 1, 2, 3,
have an implicit dependence on R2 (see Eq. (6)). However, the
problem becomes very simple if we consider only the explicit
derivatives, as proposed in [19]. Specifically, Eq. (8) reduces to

dJ

dR2
≈ −2σ2

∫ nT

0
λn−

τ
T (ẍ1 − ÿ1)y1dτ

= −2σ2

∫ nT

0
λn−

τ
T [ẍ1 − σ2(R2 y1 + σ2(y1 − y2)

− y2 − y1 y3)]y1dτ, (9)

1 We note that if xi is the actual observable, it is straightforward to obtain ẋi
or ẍi with either simple circuitry or by means of numerical methods.
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where the second line follows from explicitly writing ÿ1 in
terms of y and σ2. Solving for R2 in Eq. (9) yields the n-th
parameter estimate

R2,n =

∫ nT
0 λn−

τ
T [ẍ1 − σ2(σ2(y1 − y2) − y2 − y1 y3)]y1dτ

σ2
∫ nT

0 λn−
τ
T y2

1 dτ
,

(10)

which can be rewritten in the explicitly recursive form

R2,n = R2,n−1 +
An − R2,n−1 Bn

λCn−1 + Bn
, (11)

with

An =

∫ nT

(n−1)T
[ẍ1 + σ2(ẏ1 + y2 + y1 y3)]σ2 y1λ

n−
τ
T dτ, (12)

Bn =

∫ nT

(n−1)T
(σ2 y1)

2λn−
τ
T dτ,

Cn−1 =

∫ (n−1)T

0
(σ2 y1)

2λ(n−1)− τ
T dτ, (13)

by means of elementary algebraic manipulations. The latter
formulas are particularly suitable for real-time application of
the proposed technique.

3.2. Mismatched fixed parameters

The ability of the proposed method to estimate scalar
parameters in an ‘ideal’ setup with perfect knowledge of the
fixed parameters and noiseless systems and observations was
already demonstrated in [19]. Here, we turn our attention to
scenarios where these idealized assumptions do not hold.

As a first example, let us consider the situation in which
the fixed parameters of the secondary system have a mismatch
with respect to their counterparts in the primary system.
In particular, we apply the recursive algorithm of Eq. (11)
when (σ1, R1, b1) = (10, 28, 8/3) for the primary system
(i.e., the standard parameter values) while σ2 = kσ1 and
b2 = kb1, where k = 1.03 (i.e., there is a 3% error in
both fixed parameters), in the secondary one. The two systems
are numerically integrated using a second order Runge–Kutta
(RK2) algorithm with time step I = 5 × 10−5 time units
(t.u.) and the DTRU method is run with forgetting factor
λ = 0.995 and update period T = I = 5 × 10−5

t.u. (for an easier approximation of the integrals in Eq.
(11)). The initial conditions for the dynamic variables are
chosen randomly, namely y1, x1 ∼ U(12, 16), y2, x2 ∼

U(−12, −16) and y3, x3 ∼ U(19, 21), where U(a, b) denotes
the uniform probability distribution in the interval (a, b). Note
that, although identically distributed, the initial values of yi
and xi are drawn independently. The starting value of R2 is
R2,0 = R1 − 10.

Fig. 1 shows the absolute synchronization error, |x1 − y1|,
which is achieved with this setup. It is observed that the two
systems attain a relatively quick synchronization (a steady state
error of ≈0.1 is reached after ≈10 t.u.), although there is an
Fig. 1. Absolute synchronization error (|x1 − y1|) when applying the proposed
DTRU algorithm of Eq. (11) to adjust parameter R2 and there is a 3%
mismatch between the parameter values (σ1, b1) of the primary system and
their counterparts (σ2, b2) in the secondary one.

error floor that cannot be avoided because the primary and
secondary systems are not identical.

It is also interesting to study the effect of the mismatch on
the estimation of the unknown parameter R1. With that aim,
we have carried out 30 independent computer simulations and
computed the mean normalized absolute error (MNAE)

MNAE30 =
1

30

30∑
i=1

∣∣∣∣∣ R(i)
2 − R1

R1

∣∣∣∣∣ , (14)

where R(i)
2 is the average value of the adjustable parameter R2,

after convergence of the DTRU algorithm, in the i-th simulation
run.

The results are shown in Fig. 2, where 100 × MNAE30 is
plotted versus the mismatch in the fixed parameters (σ2, b2).
We observe, in Fig. 2(a), that the MNAE grows faster than
the mismatch, until a ‘saturation’ value is reached (≈66%
of R1). However, we have also verified that, for a relatively
small mismatch of the fixed parameters (≤5%), the resulting
estimation error is approximately of the same order. This is
shown in Fig. 2(b).

3.3. Dynamical Gaussian noise

In the derivation of Eq. (11) we have assumed that the
observed time series is noiseless. However, this is not the
usual situation in practice and we have carried out computer
simulations to assess the robustness of the proposed method
when there is Gaussian noise contaminating the observed
signals. We first consider the case in which the dynamics of the
primary system are perturbed by an additive noise term in one
of the equations. Specifically, we assume that variable x3 in the
primary system evolves according to ẋ3 = −b1x3 + x1x2 + ξ ,
where ξ(t) is a continuous-time white Gaussian process with
zero mean and power spectral density (PSD) Pξ =

1
2 . The

equations for ẋ1 and ẋ2 remain unchanged. The time series ẍ1 is
generated using the RK2 algorithm with time step I = 10−4 t.u.
to integrate the (stochastic) primary system and we apply the
DTRU method of Eq. (11) to estimate R1 and synchronize the
secondary system with the primary one. In this case, we assume
perfect knowledge of the fixed parameters, i.e., (σ2, b2) =

(σ1, b1) = (10, 8
3 ).
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Fig. 2. MNAE in the estimation of the unknown parameter R1 for several values of the fixed-parameter mismatch. The MNAE is rescaled between 0 and 100 for
direct comparison with the mismatch. (a) The fixed-parameter mismatch varies between 0 and 100. (b) Zoom of plot (a), for values of the fixed-parameter mismatch
between 1 and 5%.
Fig. 3. Averaged numerical results when the primary system is perturbed with dynamical noise. (a) Mean absolute synchronization error (|x1 − y1|). (b) Mean
normalized absolute error in the estimation of R1.
In order to assess the performance of the DTRU technique,
we have also applied the on-line parameter estimation methods
proposed in [10] and [12] to this problem. The algorithm
in [10], hereafter referred to as Maybhate’s, relies on a linear
feedback coupling of the Lorenz systems and the adjustable
parameter R2 is handled as an extra dynamic variable that
evolves according to a suitably defined differential equation.
We have integrated the equations with a feedback coefficient
ε = 20 and ‘stiffness’ constant δ = 5, chosen to speed
up the convergence of R2. The technique in [12] is termed
d’Anjou’s in the following. In this case, the secondary system
is driven by the primary one using the scheme of Pecora
and Carroll [20] but the parameter R2 is also handled as a
continuous-time variable, whose trajectory is given by a certain
differential equation. We set λ = (σ1+8)/4 in [12, Eq. (12)] for
fast convergence or R2. Note that both techniques are heavily
dependent on the synchronization properties of coupled chaotic
systems, while the DTRU method does not require an explicit
coupling between the dynamic variables of the primary and
secondary systems.

Fig. 3(a) shows the absolute synchronization error, |x1 − y1|,
attained by the three methods. The results are averaged over 30
independent simulation trials. In all simulations, the adjustable
parameter R2 is initialized with the value R2 = R1 − 10
for the three methods, while the dynamic variables are drawn
randomly, namely x1, x2 ∼ U(−16, −12), y1, y2 ∼ U(12, 16),
x3, y3 ∼ U(19, 21). It is observed that the three techniques
attain a very similar steady-state error, and the methods based
on coupling are only slightly faster than the DTRU technique.
The MNAE30 in the estimation of R1 for the same set of
30 simulations is shown in Fig. 3(b). The results are similar,
although it is seen that the estimates provided by the DTRU
method suffer from enhanced misadjustment noise, compared
to Maybhate’s and d’Anjou’s methods.

3.4. Observational Gaussian noise

Another scenario of practical interest is one where the
observations are contaminated with additive noise. Therefore,
we have carried out additional numerical experiments in which
the available times series (used to estimate R1) is ẍ1 + ξ ,
where ξ(t) is a zero-mean white Gaussian random process. The
PSD of the stochastic process, Pξ , is chosen so as to ensure
that each discrete sample of the series in the simulation has
variance σ 2

ξ = 5. As in the previous experiments, we use the
RK2 procedure to integrate both the primary and the secondary
systems, with time step I = 5 × 10−4 t.u. The forgetting
factor and update period of the DTRU algorithm are chosen as
λ = 0.97 and T = I = 5 × 10−4 t.u., respectively. The values
of the parameters in the primary system are standard.

For comparison, we have also applied Maybhate’s and
d’Anjou’s techniques to the same problem. The specific
parameters of these methods are given the same values as in
Section 3.3. It is relevant to this experiment that Maybhate’s
procedure requires that the two Lorenz systems be coupled only
through one equation (the differential equation for ẏ1), while
in d’Anjou’s technique two equations of the secondary system
are driven by the observed time series (namely, those for ẏ2
and ẏ3). Moreover, d’Anjou’s method uses the series x1 and ẋ1
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Fig. 4. Average performance results when the observed time series are contaminated with additive white Gaussian noise. (a) Mean absolute synchronization error
(|x1 − y1|). (b) Mean normalized absolute error in the estimation of R1.
simultaneously to estimate R1, while Maybhate’s needs only
use x1 (and only ẍ1 is needed for the DTRU procedure). All
observed signals are assumed to be noisy.

For a further characterization of the effect of observational
noise on the coupled system, we have also applied the method
of Huang [15] to this problem. The distinct feature of the latter
technique, compared to Maybhate’s and d’Anjou’s, is that it
requires the observation of the full primary system state, x, and
the linear feedback coupling of all equations in the secondary
system. For this reason (the dynamics of the primary system
are fully observed), Huang’s method can attain much faster
convergence than the other considered techniques, but can be
subject to a stronger perturbation when the observations are
noisy.

Fig. 4(a) shows the absolute synchronization error, |x1 −

y1|, attained by the four methods and averaged over
100 independent simulations. For every run, the adjustable
parameter R2 is initialized with the value R2 = R1 −

10, while the dynamic variables are drawn randomly from
uniform distributions, in particular x1, y1 ∼ U(8, 16), x2, y2 ∼

U(−16, −8), x3, y3 ∼ U(18, 22). It is observed that the
proposed DTRU method outperforms the other three techniques
in terms of the steady-state error. This is because coupling
introduces ‘extra noise’ in the secondary system (not only
the differential equation of the adjustable parameter, but also
every coupled equation becomes noisy). Clearly, it is the simple
Maybhate’s technique that provides the lowest error among the
methods based on coupling.

Fig. 4(b) shows the MNAE100 for the same set of
simulations. The results are coherent with those of Fig. 4(a),
and we see how the proposed DTRU procedure attains the
lowest estimation error.

4. Estimation of multiple parameters

4.1. Alternate estimation of two parameters in the Lorenz
system

In this section, we demonstrate the application of the
proposed method to estimate multiple parameters of the
primary system. As a first example, we again assume the
primary system of Eq. (5), where only b1 is known, while
R1 and σ1 need to be estimated. The observed time series
enables the computation of ẋ1 and ẍ1 (e.g., if it consists of
x1). In the secondary system, we set b2 = b1, while R2 and
σ2 are adaptively adjusted until synchronization. We adopt an
‘alternate estimation’ approach in which one parameter (R2)

is updated for a period of time while the other one (σ2) is
kept fixed. After this period, the algorithm ‘switches’ and the
second parameter (σ2) is updated during another period while
the first one (R2) remains fixed. By iterating the estimation of
both parameters, convergence to the desired values is attained
and both chaotic systems synchronize. The n-th update of the
adjustable parameter σ2 is carried out by solving

dJ

dσ2
= −

∫ nT

0
2(ẋ1 − ẏ1)

dẏ1

dσ2
λn−

τ
T dτ = 0 (15)

for σ2, which, using the same procedure as in Section 3, leads
to

σ2,n = −

∫ nT
0 ẋ1(y1 − y2)λ

n−
τ
T dτ∫ nT

0 (y1 − y2)2λn−τT dτ
, (16)

while the n-th estimate of R2 is calculated according to
Eq. (11). It is straightforward to put Eq. (16) in recursive form
if needed.

We have carried out numerical simulations in which the
primary Lorenz system is assigned the standard parameter
values, and the algorithm starts with σ2,n = 15, R2,n = 23 and
λ = 0.94. The equations of both systems have been numerically
integrated using a fourth-order Runge–Kutta (RK4) method
with integration step I = 10−4 t.u. We have adopted the
same value for the adaptation period of parameter R2, TR =

I = 10−4 t.u., while Tσ = 10I = 10−3 t.u. is the update
period for σ2,n . The result of the proposed alternate estimation
procedure is shown in Fig. 5. Convergence is slower than in
the previous examples (because of the alternate procedure)
and we have also verified that it can be more sensitive to
the initial conditions of the algorithm and the choice of the
update periods. Nevertheless, a considerable accuracy can also
be achieved. We observe how both the absolute synchronization
error, |y1 − x1|, and the normalized absolute error of both
parameters, |

|σ2,n−σ1|

σ1
| and |

|R2,n−R1|

R1
|, both fall below 10−9

after 2 × 104 t.u.
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Fig. 5. Estimation of σ1 and R1 of the primary Lorenz system by adaptively adjusting σ2 and R2. (a) Temporal evolution of the absolute synchronization error,

|x1 − y1|, as the parameters σ2 and R2 are adjusted. (b) and (c) Temporal evolution of the parameter normalized absolute errors, |
σ2,n−σ1

σ1
| and |

R2,n−R1
R1

|, as the
parameters σ2 and R2 are adjusted.
4.2. Joint estimation of two parameters in a 6-dimensional
system

For the second example, we consider a 6-dimensional
chaotic system that we build by diffusively coupling two
Lorenz oscillators with different parameter sets. Specifically,
the primary system is given by

ẋ1 = −σ1(x1 − x2) + ε(x4 − x1),

ẋ2 = R1x1 − x2 − x1x3,

ẋ3 = −b1x3 + x1x2,

ẋ4 = −σ3(x4 − x5) + ε(x1 − x4),

ẋ5 = R3x4 − x5 − x4x6,

ẋ6 = −b3x6 + x4x5,

(17)

where x = (x1, x2, x3, x4, x5, x6) are the dynamic variables,
(σ1, R1, b1, σ3, R3, b3) is the complete parameter vector and ε

is the diffusion coefficient that determines the strength of the
coupling between the two oscillators. The secondary system is

ẏ1 = −σ2(y1 − y2) + ε(y4 − y1),

ẏ2 = R2 y1 − y2 − y1 y3,

ẏ3 = −b2 y3 + y1 y2,

ẏ4 = −σ4(y4 − y5) + ε(y1 − y4),

ẏ5 = R4 y4 − y5 − y4 y6,

ẏ6 = −b4 y6 + y4 y5,

(18)

where y = (y1, y2, y3, y4, y5, y6) are the state variables
and (σ2, R2, b2, σ4, R4, b4) are the parameters. It should
be noted that both the primary and secondary systems
are true 6-dimensional oscillators, since (x1, x2, x3) and
(x4, x5, x6) (correspondingly, (y1, y2, y3) and (y4, y5, y6)) do
not synchronize because of their different parameter sets.

We consider the problem of estimating the parameter set
p = (R1, R3) = (28, 32) when the derivative signals
(ẍ1, ẍ4) can be computed from the observed time series. The
remaining primary parameters are assumed known, with values
(σ1, b1, σ3, b3) = (10, 8

3 , 18, 2), hence they can be fixed in the
secondary system, i.e., (σ2, b2, σ4, b4) = (σ1, b1, σ3, b3). The
forgetting factor is set to λ = 0.99 and the diffusion coefficient
is chosen as ε = 10. We have numerically integrated the two
systems using the RK4 method with time step I = 10−4 t.u.
Instead of the alternate estimation scheme of the previous
section, we design an algorithm which simultaneously updates
the two adjustable parameters every T = I = 10−4 t.u.
The error signal from which the cost function is defined is
e(τ ) =

∑
i∈{1,4}

ẍi − ÿi . The usual analytic approximation by
explicit derivatives yields the following updating rule for R2,

R2,n =

∫ nT
0 [ẍ1 + σ2(ẏ1 + y2 + y1 y3) − ε(ẏ4 − ẏ1)]y1λn−

τ
T dτ

σ2
∫ nT

0 y2
1λn−

τ
T dτ

,

(19)

which can be easily put in recursive form. The initial value for
the algorithm is R2,0 = 33. The algorithm for the estimation of
R3 that results from the error signal e(τ ) =

∑
i=1,4 ẍi − ÿi

is similar to Eq. (19), but using the variables of the second
subsystem instead, i.e.,

R4,n =

∫ nT
0 [ẍ4 + σ4(ẏ4 + y5 + y4 y6) − ε(ẏ1 − ẏ4)]y4λn−

τ
T dτ

σ2
∫ nT

0 y2
4λn−

τ
T dτ

.

(20)

The algorithm starts with R4,0 = 27. We remark that the
adaptation of R2 and R4 is carried out simultaneously.

The obtained numerical results are depicted in Fig. 6. Plots
(a) and (b) show the evolution of the absolute synchronization
errors |y1 − x1| and |y4 − x4|, respectively. It is seen that
both subsystems of the secondary oscillator synchronize with
their counterparts in the primary oscillator. Thus, identical
synchronization of the full 6-dimensional systems is achieved.
As was the case in the previous experiments, the decay of the
synchronization error is in pace with the parameter estimation
error, as can be observed in plots (c) and (d), that present
the normalized absolute deviations |

R2,n−R1
R1

| and |
R4,n−R3

R3
|,

respectively. Very accurate parameter estimation is achieved
(both error curves fall below 10−9 after less than 80 t.u.).

5. Conclusions

We have investigated the recently proposed method of [19]
for on-line parameter estimation and synchronization of chaotic
systems without explicit coupling of the dynamic variables.
In the latter work, only the problem of estimating a single
unknown parameter was addressed. In this paper, we have
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Fig. 6. Estimation of R1 and R3 of the primary 6-dimensional system by adaptively adjusting R2 and R4. (a) and (b) Temporal evolution of the absolute error
between the first and fourth variables, respectively, of the primary and secondary systems, |x1 − y1| and |x4 − y4|, as the parameters R2 and R4 are adjusted. (c)

and (d) Temporal evolution of the normalized absolute deviations |
R2,n−R1

R1
| and |

R4,n−R3
R3

|, as the parameters R2 and R4 are adjusted.
extended the basic statement of the method (to account for
parameter vectors with arbitrary dimension) and shown, by
means of numerical results, how it can be successfully applied
in different scenarios. In particular, we have studied the
estimation of a scalar parameter in noisy systems and the joint
estimation of two parameters. For the first problem, we have
considered different setups, including (a) mismatched fixed
parameters in the secondary system, (b) a random dynamical
perturbation of the primary system and (c) observational
additive noise contaminating the available time series. The
obtained results show that the performance of the proposed
algorithm degrades smoothly because of mismatches in the
fixed parameters, while the method is robust to both dynamical
and observational noise. Specifically, our results indicate that its
performance is similar to existing on-line parameter estimation
techniques based on coupling when dynamical noise is present,
and clearly superior when there exists observational noise.
An interpretation of these results is that coupling the chaotic
systems, while enhancing the accuracy and convergence speed
of the estimation and synchronization methods in an ideal
(noise free) setup, brings unexpected random perturbations
into the dynamics of the secondary system that can flaw the
parameter estimates and increase the synchronization error.
Since our method does not require coupling the dynamic
variables, it can be more robust to this type of noise.
For the problem of multiple parameter estimation, we have
numerically demonstrated that the proposed technique can be
successfully applied to jointly estimate two parameters both in
the Lorenz system and in a higher dimensional system formed
by diffusively coupling two non-identical Lorenz oscillators.
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