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the Distributions of the Soft Output for Each Class
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Abstract- This paper proposes a new cost function for
supervised training of neural networks in binary classification
applications. This cost function aims at reducing the probability
of classification error by reducing the overlap between distri-
butions of the soft output for each class. The non parametric
Parzen window method, with Gaussian kernels, is used to
estimate the distributions from the training data set. The cost
function has been implemented in a GRBF neural network
and has been tested in a motion detection application from
low resolution infrared images, showing some advantages with
respect to the conventional mean squared error cost function
and also with respect to the support vector machine, a reference
binary classifier.

I. INTRODUCTION

Artificial Neural Networks (NN) consist of two or more
layers of non-linear units able to discover non-linear patterns
present in the data. These networks have been successfully
applied to both classification and regression problems. Clas-
sical NNs are built by means of units characterized by a
sigmoid function. More recently, the radial basis function
(RBF) has become popular as non-linear function for NNs.
In this case, each unit is defined by a vector in which the
kernel or spherical Gaussian function is centered. In the case
of Generalized RBF networks (GRBF), the kernel is allowed
to have a non spherical shape, and so a different width in each
dimension. The RBF approach to learning is more related
to the curve-fitting problem, so that the network is trained
to interpolate the unknown classification/regression function
[1].

Classical NNs may have one or more intermediate layers
between the input and the output layers, like the network
called multilayer perceptron (MLP). A multilayer network
is more versatile than the single-layer network, so that it
is more powerful at performing classification and regression
tasks on data characterized by strongly non-linear patterns.
Kolmogorov's Theorem says that any classification function
can be learned from a training dataset for a MLP if the
number of neurons in the hidden layer is big enough [2]. For
RBF networks, another mathematical justification is provided
by the Cover Theorem of separability of patterns [1]. How-
ever, the number of hidden units should be carefully chosen
because a tradeoff between training error and generalization
ability must be reached.

The Support Vector Machine (SVM) is considered as a
new generation of Neural Networks. The most popular non-
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linear version of the SVM is the RBF-based one, so that its
architecture is similar to the RBF network's. The functional
to be minimized in SVM learning takes into account the
complexity of the classification boundary, regularizing the
discrimination function so that the solution is, in general,
sparse. This way, a number of RBF units get a weight equal
to zero, so that the number of neurons is set by the solver
[3]. Another advantage with respect to NNs is the way SVMs
penalize the error. Classical NN-based learning makes use
of the mean square error (MSE) cost function to fit the
weight and parameters of the neurons. Although this criterion
makes sense in regression, it is not optimal in classification,
because there is not a direct relationship between MSE and
classification error. This problem is partially overcome by
the SVM methodology, which considers an error based in
the distance to the classification boundary if the sample is
missclassified.

The effort to overcome the limitation of first and second
order criteria in learning with NNs have given birth to the so-
called information-theoretic learning (ITL) techniques. These
methods are based on the application of Shannon's Informa-
tion Theory concepts to the machine learning framework. In
essence, ITL methods make use of cost functions based on
the probability density functions (PDFs) at the output of a
network. In binary classification, for example, it is desirable
that the PDF of the two classes at the output are as less
overlapped as possible. Renyi's entropy has been successfully
used in unsupervised and supervised learning, together with
PDF divergence measures based on the Euclidean distance
or the Cauchy-Schwartz inequality [4]. These divergences
provide alternative definitions of the mutual information
(MI), which have been used in supervised linear feature
extraction [5].

In this paper, we propose a method for learning with a
GRBF by means of a cost function based on the distance
between the PDF of each class at the output of the network.
The PDFs are modeled by a non-parametric Parzen estimator,
and the cost function has been chosen to be scale-invariant.
A gradient descent based algorithm is proposed for the
minimization of the cost and so the adjustment of the network
parameters.

The paper is organized as follows. Section II presents the
problem statement and introduces the notation employed in
the paper. Section III presents the GRBF network archi-
tecture. Section IV introduces the proposed cost function,
discusses its main properties and presents the implementation
details of the iterative gradient algorithm used to minimize
the cost. In Section V, we present the results obtained when

1-4244-1 380-X/07/$25.00 ©2007 IEEE



the proposed cost function, implemented in a GRBF network,
is used in a motion detection application from infrared
images. Finally, Section VI comments the main conclusions
about the proposed method.

II. PROBLEM STATEMENT AND NOTATION

The problem we are facing in this paper is binary clas-
sification with neural networks in a supervised framework,
which can be stated as follows: to train the network, a labeled
data set of N samples is available

{Xk,Zk}, k 1, , N,

with input patterns corresponding to a space input of dimen-
sion D, i.e., x C ]J?D, and binary labels, zk C {0, 1}. We
will denote by No and N1 the number of samples of class-
0 (zk = 0) and class-I (zk = 1), respectively. Of course,
N = No + N1. Thus, the data set can be divided in two
subsets, one for each class

i1, ,No,j 1, ,N1.

A neural network will provide a soft output for each input
pattern

Yk = hw(Xk), (1)

where vector w denotes the set of parameters of the neural
network. Again, we can separate the soft outputs obtained
from inputs of different classes using the notation

y(j) = h,(x(f)), f C {0, 1}.

Then, a hard output will be obtained from the soft one,
selecting one of the possible classes for each pattern (not
necessarily the correct one)

zi g(Yk).
Network parameters w are selected to optimize a cost

function measured over the available training data set with
the goal of obtaining a good classification rate. We will
discuss this point later in Section IV.

III. GENERALIZED RADIAL BASIS FUNCTION NETWORK

In this paper, we concentrate on the application of the gen-
eralized radial basis function (GRBF) network, which is an
extension of the radial basis function (RBF) network which
allows a different variance for each input dimension [1]. The
relaxation of the radial constraint transforms the standard
Gaussian kernels with circular symmetry into elliptic basis
kernels, which can reduce the number of necessary basis
functions (or neurons) to adequately cover the input space
for a given problem.

Specifically, we will work with a GRBF network with one
hidden layer ofNn neurons and a linear output neuron, which
provides the following output for a given D-dimensional
input pattern

Y n

n=l

where On(Xk) is the output of the n-th neuron in the hidden
layer

(x) 11 e { (Xk,d -in,d) }

and {An}, are the weights of the linear output neuron.
Therefore, the parameters of this network are the centers
(D-dimensional) of each basis function, its variances or
standard deviations (D-dimensional), and the Nn weights of
the output neuron,

W = T ... T T ... T ... T (3)
where

HiV [, **, i,D], I [ i, * *, i,D]

IV. COST FUNCTION

In this section, first the proposed cost function will be
introduced and discussed and then the implementation details
will be presented.

A. Cost function and its properties

As previously mentioned in Section II, in a classification
problem the neural network provides a soft output, which
depends on the network parameters w, as explicitly denoted
in (1). In our case, the soft output is obtained by (2), and
parameters are given in (3). Then, the classification label, 0
or 1, is obtained from the soft output.

In supervised training, parameters w are obtained by using
the labeled training data set. A measurable (over the training
data set) cost function is defined and some algorithm is
applied to optimize such cost function. The most common
approach consists in minimizing the mean squared error
(MSE) between the soft output and a reference value (usually
the known label) for each class. In this case, the cost function
is

N

J(w) = {1Z (Yk Zk)2.
k=1

This cost function can be minimized by a gradient descent
algorithm, like in [6] for a GRBF.

To obtain the hard output, the soft one is compared with
a threshold. Usually, the threshold is the mean value of the
reference values for both classes, 0.5 if reference values are
0 and 1. Therefore

Ak ((Yk)o. ifYk> 0.5
Zk (4)) x1, if y<0.5

Although minimizing the MSE has shown a good perfor-
mance over a great number of classification problems, this
cost function was initially designed for regression problems.
In classification problems, the main goal is not to minimize
the MSE between labels and soft outputs but to minimize the
probability of error. This probability is closely related to the
distributions, for samples of each class, over the soft output
Yk. If we denote by fye (y) the distribution of the soft output

(4)



for input patterns of class X, f C {0, 1}, the probability of
classification error is

Pe = to J fyo(y)dy +71 fJi(y)dyR

where 7o and 71 are the probabilities of classes 0 and 1,
respectively, and Jo and i1 are the decision regions for
each class, i.e., R4 = fylg(y) = f}. To directly minimize
this probability of error is not possible in most cases, but it
is possible to design some cost functions aiming at reducing
it in an indirect way.

Clearly, if distributions of both classes do not overlap and
function g(y) is properly designed, the probability of error
becomes zero, while the probability of error grows when the
overlapping between distributions increases. Therefore, cost
functions measuring the overlapping between distributions
for each class can be useful to reduce the probability of error.

In this paper we propose the following cost function to be
minimized by the training algorithm of neural networks

fyo(y) fyi(y) dy
J(w) A2

X (fyo (y) fyi (y)) dy
-00

where fjy (y) denotes the estimate for the distribution of the
soft output for class X, which can be obtained from the avail-
able training data set. The inverse of the cost function can
be regarded as a divergence measurement between estimated
distributions, having the following properties:

* It is symmetric.
* Its maximum (minimum of the cost function) corre-

sponds to distributions without overlap.
* It is scale invariant.

Another interesting characteristic of this cost function is that
it is well defined for unbalanced training data sets, where
the number of samples of each class is different. As long as
the number of samples of each class is enough to perform
a reasonable estimate for the distribution of its soft output,
the relative number between samples of each class is not
relevant.

It can be seen that both the numerator and denominator
of the cost function could be a reasonable cost function
by themselves. Looking at the numerator, it proposes to
minimize the product of both distributions, which will tend
to minimize the overlap between distributions. Looking at
the denominator, it proposes to maximize the quadratic
distance between distributions, which again will tend to
"separate" distributions. The reason to avoid using any of
these two terms independently is that both, numerator and
denominator, are scale dependent, while the quotient is scale
invariant. Therefore, using only one term can tend to scale
the soft output to minimize (or maximize) the numerator (or
denominator) instead of effectively reducing the overlap.

The non parametric Parzen window estimator [7] is used

to obtain the distribution estimates by

fy,e(Y) = Nf E Ka,(y - y(t)
i=1

where K, (y) has to be a valid probability distribution
function and orp denotes its size. Here, we will use a Gaussian
distribution with standard deviation ap.

The cost function can be rewritten as

J(w)

I A A~~~fyo(y) .fyi(y) dy

J (Afyo (y)2 + (fyi(y))2 2fyo(y)fYi(y)] dy
Taking into account that for Gaussian distributions

Ka,(y - a) Ka,(y - b) dy = K,(a - b),

with or = 2op, the cost function becomes

A(w) A(w)
J(w) B(w) Bo(w)+ Bi(w) -2A(w)'

where

A No N1

0 1ZZK7(y10)

B0 No No

02 E I:1

and
N1 N1

B1 N2 ZZK (1)
12 I:l :1a

y(1))

y(0))

y(1))

B. Implementation details

The proposed cost function will be minimized by means
of an iterative gradient descent algorithm. The gradient of
the cost function can be written as

&J(w) E E Oj(w)ay(f)
£=O j=1 &yj 9W

In this case,

( (w) B(w)
OJ(w)

oyi(f)
A(w) aB(w))

(B(w))2

where

&A(w)
&y(O)

&A(w)
&y(l)

1 N1

N=1

1
No

N=1

(0)
())yJ

(1)yi

y(l )Y y(1)
y 52
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Finally, for the proposed GRBF network, whose soft
output is given by (2), the partial derivatives of the soft output
with respect to the network parameters are, independently of
the class label

&Yk = Xkj ixj Aoi(xk),
01i,j a 2,

and
&Yk
Ai Oi(Xk).

A. Characteristics of the IR images
The IR camera is a low cost and low resolution (16 x 16

pixels) prototype based on PbSe sensors. PbSe sensors have
a relatively high responsitivity at room temperature, which
allows to work without need for cooling, thus providing low
cost detectors.

Based on the images provided by the IR camera, we desire
to implement a binary classifier to decide if a person is or not
present at each image. The classifier will trigger an event to
record the video sequence when a target has been detected.
However, the actual prototype suffers from a high thermal
drift, which seriously difficults the design and development
of a neural network based presence detector. To overcome
the thermal drift, a differential scheme has been adopted.
The camera does not provide to the classifier the acquired
image but the difference between the actual image and the
image obtained one second before. The thermal drift is slow
enough to be neglected in this short interval. This means that
the application becomes a motion detector because a static
target will not be detected. However, since an intruder has
to move to get into the room and to go out of the room, a
motion detector will be enough to our requirements. Figure
1 shows the 16 x 16 IR image for a person. It can be seen the
silhouette of the person and a shadow at the position where
it was a second before. Figure 2 shows the differential IR
image when no target is in scene. It can be seen that the low
resolution image is enough to discriminate a person present
in an image.

Once the GRBF has been trained from data samples to
obtain the w parameters, the classification has to be done
in order to minimize the probability of error. Assuming that
both classes have the same probability, the decision rule is

0, if fYO(yk) > fr(yY)
9(Yk) l1, if fyo (yk) < fY (yk)

To implement this decision rule, it is not necessary to
evaluate fyo(Yk) and fyi(Yk) each time a new sample is
presented to the network. The simplest method is to evaluate
both fyo(y) and fyi(y) as a function of y and establish
the thresholds dividing the output space in decision regions
for each class. This can be accomplished numerically in an

efficient way from the training data set.

V. APPLICATION TO PEOPLE MOTION DETECTION FROM
LOW RESOLUTION IR IMAGES FOR SECURITY

We have tested the proposed cost function implemented
in a GRBF network for a security application, to detect
intrusion of people in a room that is monitored by an infrared
(IR) digital camera. In this section, first we will describe
the characteristics of the images to be classified, and then
the simulation results obtained in the classification will be
presented.

Fig. 1. 16 x 16 pixel differential IR image with a person.

B. Classification results
A labeled set of differential images has been acquired to

train the binary classifier in a supervised training scheme. We
have divided it in three subsets: training set (515 images),
validation set (520 images), and test set (4632 images).

and
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Fig. 2. 16 x 16 pixel differential IR image without any target.

To reduce the data dimensionality and to improve the
generalization capability, an initial feature extraction is nec-

essary. We have tested the performance in this application of
the two most common blind techniques for feature extraction,
Principal Component Analysis (PCA) [8] and Independent
Component Analysis (ICA) [9]. PCA provided the best
results and was finally selected. The number of components
have been selected by cross-validation. Two components
demonstrated to be enough to allow a suitable classification
between the two specified classes in the problem at hand.
After data normalization (between 0 and 1) PCA feature
extraction with 2 eigenvectors obtained from the training data
set was performed for the three subsets.

First, we have compared the performance of the proposed
cost function, implemented in a GRBF network, with a SVM
classifier. The LibSVM matlab package [10] has been used
to obtain the SVM solution. Gaussian kernels have been
selected. Once the kind of kernel has been selected, the SVM
has two parameters: the weight C to ponder the classification
errors, and the kernel variance. The optimum parameters
have been obtained by cross-validation, giving C = 0.9 and
(72 0.05 ( = 10).

To provide a parsimonious solution, a GRBF with only 2
neurons was selected. To deal with the local minimum of
the cost function, several independent trials with a random
initialization were performed. More efficient initialization
methods, as Orthogonal Least Squares (OLS) [11], could
be employed. However, to evaluate the sensitivity of the
method with respect to the local minima we preferred a

random initialization. Centers of the Gaussian neurons (Au,)
are placed at the position of two input patterns randomly
selected. Variances 7n,,k were initialized with a uniform
distribution in [0.1,1] independently for each neuron and
dimension. Several sizes for the Parzen window kernel have

been tested. Concretely

(7 C {0.1, 0.25, 0.5, 1, 5, 10}.

To prevent over-training, the validation set has been used to
decide the end of the iterative updating algorithm.

Table I summarizes the results obtained with SVM and
a GRBF with the proposed cost function. 300 experiments
with different initializations were performed for the GRBF
network with the proposed algorithm. The best SVM solution
provides a higher probability of error in the classification
of the test set with a higher number of support vectors
(127). Therefore, the SVM method has 256 parameters (two
coordinates per support vector, C, and the Gaussian kernel
size). The proposed method, using only two neurons (10
parameters) is able to obtain a lower probability of error in
this problem, while the conventional formulation of the SVM
does not allow to fix the network size if performance is used
(for instance by cross-validation) to obtain the solution.

TABLE I

COMPARATIVE OF RESULTS OBTAINED WITH A SVM AND A GRFB

USING THE PROPOSED COST FUNCTION.

Network Minimum Error Neurons (SV's) Parameters
SVM 0.90674 % 127 256

Proposed 0.7556 % 2 10

We also consider interesting the comparison with the same

network architecture using a different training algorithm. We
have compared the proposed cost function against the classi-
cal MSE cost function. The GRBF with MSE cost function
was trained by the gradient descent algorithm presented in [6]
and combined with a decision device given by (4). The same

random initialization procedure detailed before was used for
both algorithms and 300 trials were performed.

Figures 3 and 4 compare the error rate (in °O) obtained
with the MSE and the proposed cost function, respectively.
For the proposed method, results obtained for the optimal
size of the Parzen method (or = 5) are plotted.
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Fig. 4. Error rate for the proposed cost function in the 300 independent
experiments.

The proposed method shows a lower sensitivity to local
minima than the MSE cost function. MSE seems to be
trapped at several local minima and seems to tend to some

fixed solutions. Table II provides the minimum error rate,
the mean value, and the standard deviation of the error rate.
These measures are provided for the MSE cost function, for
the proposed method using the optimal Parzen kernel size,
and the proposed method averaging results with all kernel
sizes. The proposed method provides a better error rate than
the MSE cost function. The mean error rate obtained with the
optimal kernel size is much lower than the obtained with the
MSE cost function. More interesting is that even averaging
results for all kernel sizes the proposed method has a lower
mean value.

TABLE II

COMPARATIVE OF RESULTS OBTAINED WITH A GRFB USING THE MSE

AND THE PROPOSED COST FUNCTIONS.

Cost function Minimum Error Mean Error STD
MSE 0.8851 % 7.8573 % 9.0481

Proposed (Optimum a) 0.7556 % 3.2464 % 4.3986
Proposed (All S'S) 0.7556 %0 3.9773 %0 4.4061

Considering the effect of the kernel size, simulations have
shown that this parameter is not very critical. Table III
compares the minimun, mean, and the standard deviation of
the error rate for all values of the kernel size or. Although
the best results are obtained for (u= 5, the differences are

small and with all values the best result is better than the
obtained with the MSE cost function and the SVM.

TABLE III

RESULTS OBTAINED WITH THE PROPOSED COST FUNCTION FOR

DIFFERENT PARZEN KERNEL SIZES.

VI. CONCLUSIONS

A new cost function is proposed in this paper to train
neural networks for problems of binary classification. The
proposed cost function aims to reduce the overlap between
the distributions of the soft neural network output for both
classes, helping to reduce the probability of error. The Parzen
window method is used to estimate the distributions from
the training data set. Using Gaussian kernels for the Parzen
methods brings out efficient adaptive equations to minimize
the cost function by means of an iterative gradient descent
algorithm. Furthermore, the cost function can be easily
extended to multi-class classification problems.

The cost function is implemented in a GRBF network and
it is applied to a motion detection security application from
low resolution differential IR images. In this application, the
proposed cost function and the GRBF architecture demon-
strate to be able to obtain parsimonious solutions with better
results than a more complex SVM solution, and than the
same architecture trained with the conventional MSE cost
function.

Further work is necessary to evaluate the performance of
this cost function in other applications, with other network
architectures, and to analyze alternative extensions and mod-
ifications of this proposed cost function, such as considering
the distributions of each class in the outputs of the neurons in
the hidden layer along with the distributions of the network
output.
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