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ABSTRACT

We consider a large-scale, dense sensor network with two types of
binary sensors with different discrimination performance and costs.
We want to analyze what is the optimal proportion of both sensors in
a target detection problem by assigning a given total cost per mea-
surement. We obtain the hypothesis test, and we obtain the test per-
formance using large deviation bounds. We found that the optimal
proportion is "winner takes all" like. The sensor with the best per-
formance/cost ratio is selected.

Index Terms- Sensor networks, large deviations, cost-
constrained.

1. INTRODUCTION

The fundamental performance limits in large-scale, randomly de-
ployed, dense wireless sensor networks has received a great attention
in the last years. Multiple contributions have been made to charac-
terize the performance in several problems; the asymptotic perfor-
mance for estimation [1, 2] and detection [3] problems are some
examples.

Some efforts have also been made to determine the selection of
the local detection rules (the kind of sensors to be used). Tsitsik-
lis [4] shown that when the number of sensors is arbitrarily large,
the optimal binary decentralized detection is achieved by identical
local detection rules, and this result has been recently extended [3]
showing that using identical transmitter is also optimal.

One key aspect in networks with self-powered sensors is the en-
ergy consumption, which limits the time life of the network. The
most energy demanding task, according to [5], is the wireless trans-
mission. One alternative to economize energy is to employ censored
transmission schemes. In [6] the censoring scheme is based on the
idea that only sensors with positive detections try to transmit their
positions. More elaborate censoring schemes has been proposed in
the literature [7], but they do not apply in this setting because, as said
before, the local decision could not be based on a likelihood ratio.

In this contribution we consider the problem of designing a bi-
nary network when different types of sensors, with different char-
acteristics, are available and when a cost limitation is imposed. A
censored transmission scheme is employed aiming to enlarge the net-
work life. The simplest case, with two classes of sensors available,
is analyzed. We do not restrict the local detectors to be based on a
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likelihood ratio, thus allowing the use of wide used non-parametric,
learning-based local detectors, like in [8]. The behavior of the lo-
cal detectors will be characterized using, for each class of sensors, a
model in which the probability of detection (including false alarms)
of the sensor varies as a function Pd ofthe distance between the sen-
sor and the source or target to be detected, as proposed in [9]. The
performance will be evaluated by means of a large deviation bound.
The optimal solution will maximize this measure subject to the cost
constraint.

2. PROBLEM STATEMENT AND NOTATION

We consider that two different classes of sensors, class-a, and class-
b, are available to deploy a sensor network over a region 'D c 1f2,
of area S. Sensors of both classes will be randomly deployed over
'D drawing a uniform distribution (for each class). The total cost
dedicated to sensors is constrained to be a fixed amount C. In this
case, if Ca and Cb are the costs per unit of sensors of class-a and
class-b, respectively, and if t&a and tb denote the number of sensors
for each class in 'D, the following constraint must be satisfied

fa Ca +±b . Cb = C. (1)

All sensors of a given class will apply the same binary detec-
tion rule, not necessarily based on a log-likelihood ratio (LLR) test.
Given the region 'D and the position of a possible agent or target,
xt, two hypothesis are defined: Ho, or null hypothesis if a target is
not present at x t; H1 or alternative hypothesis if a target is present.
The probability of detection of an agent located at coordinates xt,
for a sensor of class-j, j C {a, b}, which is located at position x, is
denoted as

Pi(xt, X, a) P(Y = lXt = xt,X = x),

where ae denotes the probability of false alarm (PFA) ofthe detector.
This function depends on the nature of the specific detection pro-
cess, but its general conditions are established in [9], where the joint
probabilities ofX and Y under each hypothesis are provided.

A censored transmission scheme is considered, similar to the
one proposed in [10]. The extension ofthe scenario proposed in [10]
to deal with two classes of sensors can be summarized as follows:

* The exploration of D can produce, potentially, the following
data set:

with x C D,yE C {0, 1}.
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* Each pair (xi, YI) represents the reading of a sensor of class-
j located at coordinates xi that can detect (yi = 1), or not
(y3 0) a specific target.

* As in [10], to reduce the energy consumption, and thus en-
larging the time life of the network, we assume that a pa-
rameter ps, which defines the probability of sensing, can be
dynamically tuned at all sensors. At every sensing instant (au-
tomatic or beacon driven), each sensor independently decides
to sense with a probability ps. We denote P < Vg the number
of sensors of each class that sense.

* For the sake of saving energy, only sensors with a positive de-
tection (Y = 1) try to transmit their position, xj, j C {a, b},
to the fusion center. As in [10], to model the effect ofmedium
access and transmission errors, we consider that each sensor
that tries to transmit has a probability of transmission error,
Pe. At the fusion center only the positions ofthe f <f <t
sensors of class-j that achieved a successful transmission are
available. In the following, these positions will be labeled as
{X3,i 1,. j C .a,b}.

It is also interesting to remark the information that is not avail-
able at the fusion center:

* The number of sensors of each class, fi, that, after sensing,
obtain a negative detection (Y = 0), and the positions of such
sensors.

* The number of sensors of each class, fi, that, after sensing
and obtaining a positive detection (Y = 1), fail to transmit
their position to the fusion center, and the positions of such
sensors.

In this scenario, we try to determine the optimal number of sen-
sors of each class, fa , and b, if a cost constraint as (1) is established.

3. HYPOTHESIS TEST FOR DETECTION

The hypothesis test for the detection problem stated above is based
on the following vector of observations

~~[4~~ a b bi a fbi,1tI7* f t 1 ftt tt tt

which includes, in this order, the positions ofthe fa sensors of class-
a that achieved a successful transmission, the positions of the ft
sensors of class-b that achieved a successful transmission, and the
number of sensors ofeach class that are available at the fusion center,
t and t, respectively.

The likelihood ratio is

F feH(O -Hl)
feIH(O HO)'

respectively. It is straightforward to obtain fk IH,Y (xl |H, 1) by

using the definition of the probability of detection p3 (Xt Xi, z)

fXkH,y(Xlz IH|1, 1) fDpd( t ) dx

and

The number of sensors of each class are independent, therefore prob-
abilistically they are modeled as follows:

fLt,LhjlL-,Lb,H(ftt7t | H.)=

f(tga Ifat |, H.t) *f b ifL
b

t|, HU ), (2)fL-IL-,H(4ta ) fLbjLb,HQ4(ft u, 2

where the distribution for the number of sensors of each class is
given by (see [10])

fL, Li,H VI If,IHu.) x f) Ptlu)

a-t
(e f,S (I - P'SYt-

Given a probability of transmission error, Pe, the probability of
a sensor of class-j having a successful transmission is

p= (1 pe) p

where pD is the probability ofhaving a positive detection for a sensor
in region 'D. Obviously, this probability depends on the underlying
hypothesis, i.e.

Pt = ( l Pe ) PD,I 1
and

Pto= (1 -Pe)* PD1°'
where

dI(D ) X) dx,

and

PDIo = J
Finally, the decision is usually given in terms of this ratio

Ho
y=InF T.

H1

The threshold can be obtained, for instance, by using the Bayes cri-
teria or by means of asymptotic gaussianity for the Neyman-Pearson
criteria (similar to the one obtained in [9]).

where the pdf of the observations under hypothesis Ha is

tt ftb

fel|H(0|fH) = fXfIH,Y( i nH,1 fXIH,Y(X'kH-, 1)
i=l k=1

fLt,jLa,Lb,H (ft 7 ft |t , Hu)

Here, Li and Li, j C {a, b} are the random variables modeling the
number of sensors (of each class) that achieved a successful trans-
mission and the total number of deployed sensors (of each class),

4. PERFORMANCE ANALYSIS BY LARGE DEVIATION
BOUNDS

To evaluate the performance of the hypothesis test, we will use the
large deviation framework by using error exponents. These asymp-
totic measurements will be used to search the optimal proportion of
each class of sensors in a cost-constrained environment. If £rl is the
probability of error (of some kind) obtained with n observations, the
error exponent is defined as

lim --ln n
n--oc n
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In NP test, the best error exponent is given by the Stein's lemma, that
applied to our problem says that for any probability of false alarm
oz, C (0, 1)

lim In,3 =,, D(fejH(O Ho)IIfejH(OIH1)),

where D(feI H(OI Ho) feI H(OI Hi)) denotes the Kullback-Leibler
(KL) divergence [11] between the probability density functions of
the observations under each hypothesis. We will use the notation
D(Ho Hi ) for short.

For the test under analysis, the divergence is

a fb

D(HoIIH1) = K fLa,LhjLa,Lb,H(ft) 4t a bHO)
tt O°p b o0

I~~ ~ ~~~~Hnft,tgaL,(t7t|,,o)
1 [a

I IinfxIHY(x H1, 1) dL
tJD SID} (3)

5. OPTIMAL NUMBER OF SENSORS OF EACH CLASS
UNDER COST CONSTRAINTS

Now, we want to obtain the optimal number of sensors of each class
in the cost constrained problem defined by equation (1) by using
the asymptotic performance measurement obtained in the previous
section. This means that we look for the couple f ' and b that maxi-
mizes the divergence (3) subject to the constraint (1).

The divergence (3) can be divided in four terms, associated to the
four terms into the brackets. Taking into account the independence
ofthe number of vector for each class, which implies equation (2), it
can be seen that the last three term are proportional to, respectively

E [fa +f4La = aLbH=b,_ = Ho;, (4)

E[f ILa=L a H =Ho], (5)

Finally, the first term of (3) can be rewritten as

a fb

fLaLa,H(f4t 7bHo)* fLbiLb,H(nftI 7'HO)
fa =0 ftb=0

fLta La ,H(tatIa, Ho) *fbL Ifbb
t , Ho)

fLtafIL,(,HtHfLbjLbH t

Ka ((t a If1a,L,(e Ho)
)7 fa Ifa, HO) 1fLal Lah (teHo

K fLtLJ,H(lft,IHo) in fI4In-H( HaIH

[(1 Ps) + (1-PIio)Psa in ( Ps) + (1 P o)P}

i.e.. linear with the number of sensors. The divergence (3) is linear
with the number of sensors of both classes, independently of the
shape ofthe probability of detection function. Therefore, the optimal
solution of the cost-constrained problem will be one of the following

posersibiites:teaiclmnpuain
.~~~~~~~~ L Li H II, O

pOSSl91ltldS:~ ~ Ptl

CLb =) or (La OLb C)

i.e., to choose all sensors of the same class. The class to be selected
will depend on the performance/cost ratio of each class. Figures 1
and 2 show the divergence in a cost-constrained problem for two
probabilities of detection, the "spanish hat",

Pd (XtJC t, a) = {(I -) if 1X1 -X112 < ro
oz otherwise

and the exponential
and

E [fbILb =b)H=Ho], (6) Pd(Xtx a) 2E+(1 -0 f)e -x 12 (7)

where, abusing of notation, the operator E[. F = f] denotes ex-
pected value given F = f. Constraint (1) implies a linear relation-
ship between Ca and fb,

tb C- *a Ca
Cb

Expectation (5) is linear with the number of sensors of class-a, and
therefore, linear with the numbers of sensors of class-a too. Expecta-
tion (6) is linear with the number of sensors of class-b, and therefore,
linear with the number of sensors of class-a too. And expectation (4)
is proportional to the total number of sensors, and, because ofthe in-
dependence, linear with the number of sensors of each class.

where in both cases o denotes the probability of false alarm, and 3
the probability of miss-detection. Figure 1 considers the following
normalized costs: C = 100, C' = 2, and Cb = 1. The parame-
ters for "spanish hat" and exponential are '( = 0.05, A' = 0.05,
ab 0.25, /b 0.25 (all these are common), and r' = 1, O = 1,
rb 0.75, 0b 1.33. It can be seen how in this case the divergence
is linearly growing with fa for both probabilities of detection. There-
fore, in this case the best option is to choose all sensors of class-a
(50 sensors in this case).

Figure 2 considers the following normalized costs: C = 100,
ca = 4, and Cb = 1. Now, class-a sensors are notably bet-
ter than the previous ones, but also more expensive. The parame-
ters for "spanish hat" and exponential are a = 0.01, 3a = 0.01,
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Fig. 1. D(HoIIHi for normalized costs C I00, Ca=
Cb = 1. Parameters for "spanish hat" and exponential: Oca
3a = 0.05, r = 1, Oa = 1, o = 0.25, b = 0.25, rb

0b = 1.33.

2, and
= 0.05,
= 0.75,

ob = 0. 15, /b 0. 15 (all these are common), and rO = 1, O = 1,
r = 0.75, b= 1.33. It can be seen how in this case the diver-
gence is linearly decreasing with t&a for both probabilities of detec-
tion. Therefore, in this case the best option is to choice all sensors

of class-b (100 sensors in this case).
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Fig. 2. D(Ho IH1 for normalized costs C = 100, C =
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4, and
= 0.01,
= 0.75,

and only class-b sensors. This is equivalent to evaluate the simplest
divergence expression derived for a single sensor type, presented in
[10], for the maximum allowable number of sensors of each class
considering the cost constraint, and to select the class with a higher
divergence.
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6. CONCLUSIONS

We have shown that in a binary sensor network, with a censored
transmission scheme, the optimal selection of sensors under a cost
limitation is to choose all sensors from the same type. The error

exponent is linear with the number of sensors of each class, inde-
pendently of the probability of detection function. The class to be
selected will depend on the performance/cost ratio of each class of
sensors. Therefore, to select the best class it is only necessary to
evaluate the divergence in (3) for two cases: only class-a sensors
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