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Linear Feature Extraction
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Abstract—In this paper, we present a novel scheme for linear
feature extraction in classification. The method is based on the
maximization of the mutual information (MI) between the features
extracted and the classes. The sum of the MI corresponding to each
of the features is taken as an heuristic that approximates the MI of
the whole output vector. Then, a component-by-component gra-
dient–ascent method is proposed for the maximization of the MI,
similar to the gradient-based entropy optimization used in inde-
pendent component analysis (ICA). The simulation results show
that not only is the method competitive when compared to existing
supervised feature extraction methods in all cases studied, but it
also remarkably outperform them when the data are characterized
by strongly nonlinear boundaries between classes.

Index Terms—Feature extraction, information theory, pattern
recognition.

I. INTRODUCTION

THE general problem in supervised learning is to estimate
the relationship between an input and an output from

a data set , , . In this paper, we
focus on classification problems, in which is discrete, i.e.,

. In that case, is referred to as the class
or the label.

Very often, it is desirable to reduce the dimension of the pre-
vious data to the classification. There are several reasons to do
it. First, the generalization ability of the resulting machine is
improved when the number of variables is low with respect to
(w.r.t.) the number of input data samples. Second, a lower di-
mension leads to faster and computationally cheaper training
and testing of the classifier. Finally, finding a relevant subset
of variables or a ranking of the most informative ones can be
useful for interpretation and explanatory purposes. Thus, the
problem of extracting a set of features from the original
ones is referred to as feature extraction (FE). If the
FE takes into account the class, the FE is said to be supervised.

The FE is defined by a function , that
may be linear or nonlinear. The use of one or the other is re-
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lated to the classifier used, so that it is a common practice to
apply either a linear FE method followed by a nonlinear classi-
fier, or a nonlinear FE method before a linear classifier. In the
first case, the responsibility of finding the nonlinear separation
boundaries relies on the classifier. In the second case, the feature
extractor projects the data on a set of variables in which the non-
linear patterns are unfolded, and a linear discrimination function
is able to separate the classes [1]. In this paper, we consider the
linear FE. As an example of the potential of linear FE, it has
been shown that the performance of a simple -nearest-neigh-
bors (KNN) classifier can be spectacularly improved by a proper
linear transformation on data [2].

Classical supervised FE methods assume that classes are lin-
early separable, so that the distance between classes is taken as
the discrimination criterion. Some of these methods are linear
discriminant analysis (LDA) [3], sliced inverse regression (SIR)
[4], partial least square regression (PLS) [5], and canonical cor-
relation analysis (CCA) [6].

There is a common limitation of these methods. They rely
on first- and second-order statistics, which give an idea about
the linear separability between classes (remote means and low
variances suggest easy separation). Thus, a method able to see
further than linear class separability must take into account ad-
ditional information, which rely on high-order moments. The
FE, in spite of being linear, must preserve the discriminative
information even if the classification boundaries are nonlinear.
For this purpose, we make use of Shannon’s information theory,
which provides us with a powerful tool for measuring infor-
mation in statistical terms. In this context, mutual information
(MI) measures the degree of statistical dependence among two
or more variables. When dealing with FE for classification, the
dependence of interest is the one between the features extracted
in and the classes in .

The purpose of this paper is to introduce a method that, by
making use of MI, is able to extract the most discriminative pro-
jections. The validity of our approach is supported by informa-
tion theoretic results that relate the concepts of MI and error
probability. The set of performance experiments show that our
method is as good as any of the existing linear methods, and out-
performs them when facing data sets characterized by a strongly
nonlinear classification function.

The rest of the paper is organized as follows. In Section II, a
summary of information theory concepts is provided, together
with the current state-of-the-art of information-theoretic feature
extraction methods. In Section III, we describe our algorithm
for maximizing the MI. In Section IV, a set of experiments are
described that show the feasibility of the method for feature ex-
traction. In Section V, we offer some conclusions and sugges-
tions for future work.

1045-9227/$25.00 © 2007 IEEE
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II. BACKGROUND ON INFORMATION THEORETIC LEARNING

In a classification problem, the MI between the and the is
given by

(1)

where is Shannon’s differential entropy, defined as

(2)

The MI measures the information that one variable contains
about another one, i.e., the reduction of uncertainty of a magni-
tude when another one is known [7]. Intuitively, features con-
taining a high quantity of MI w.r.t. the classes are more suit-
able for classification than others that contain a lower level.
As noted by Torkkola [8], two bounds on Bayes error justify
the use of MI between components and classes as a criterion
for FE. The first one is Fano’s lower bound

; the second one is Hellman and Raviv’s
upper bound . Both bounds de-
crease as the grows, which makes reasonable to use the
MI as a criterion for FE.

On the other hand, the data processing inequality says that, for
any deterministic transformation , the following property
holds:

where the equality holds only when is invertible or leads
to a sufficient statistic of w.r.t. [7]. Since the MI between
the data and the classes cannot be improved, our objective is to
obtain the that preserves the maximum information for a
given dimension reduction. In the sequel, we will only consider
linear transformations as . Formally, the
problem can be stated as

(3)

with being a matrix . The computation
of this quantity is difficult due to two reasons. First, the proba-
bility density functions (pdfs) of the data need to be estimated
to obtain the entropy. This can be done via a nonparametric es-
timation, as Parzen window modeling, or by a semiparametric
way, such as a Gaussian mixture model (GMM). Both models
may suffer from the “curse of dimensionality,” which refers to
the overfitting of the training data when their dimension is high.
Second, the integral in (2) cannot be solved in an analytical way,
except for few, analytically known pdfs. Parzen models as well
as GMMs describe the pdf as a sum of simple (usually Gaussian)
distributions. The sum inside the logarithm makes the problem
of integration intractable.1

Due to these difficulties, some recent works on in-
formation-theoretic learning have proposed the use of
alternative measures for MI. The MI can be stated in
terms of the Kullback–Leibler’s divergence as

1A method for multidimensional entropy estimation based on GMM mod-
eling has been described [9]. According to this estimation, a maximization of
MI is carried out for feature extraction. This method reliably works when very
few clusters are enough for the GMMs and the number of dimensions is not very
large.

[7]. To avoid the difficulty
of its computation, alternative divergences based on geo-
metric theorems have been described, as the Cauchy–Schwartz
and the Euclidean difference-of-vectors inequalities [10].
The pseudo-MIs obtained have been successfully applied to
nonlinear FE [11] as well as linear FE [8] by means of a
nonparametric estimation of the pdfs involved. Renyi’s MI
also avoids some of the computation problems of Shannon’s,
so that it has been proposed for both unsupervised and su-
pervised learning [11]. Recently, an interesting approach to
the information-theoretic FE has been introduced, in which
a linear projection on the data is applied that maximizes the
likelihood of the conditional (estimated) conditional densities.
The criterion is shown to be asymptotically equivalent to the
maximization of MI [12].

The estimation of the MI has also been considered from a
KNN perspective. Kraskov et al. [13] propose a method for es-
timating the MI among a set of continuous variables based on a
KNN evaluation of their interaction. This approach is based on
a previous work that estimated the entropy following the same
procedure [14]. Unfortunately, a KNN approach cannot been
applied to a scheme in which the MI is to be optimized by a
structured procedure, as a gradient-based one. A linear transfor-
mation on the data can make the nearest neighbor of a sample
change, so that there are discontinuities in the derivative; hence,
a global search procedure should be used for it optimization.

In spite of FE, the MI as a criterion has been applied to a
variety of learning-related problems. Feature selection (the es-
pecial case of FE in which the features extracted are a subset
of the original ones) has also been analyzed by means of a di-
rect estimation of MI between features and classes [15]. The
MI was estimated by building a histogram from each contin-
uous variable and then treating it as a discrete one. The infor-
mation bottleneck is a clustering method inspired by Shannon’s
rate distortion theory that maximizes the MI of the selected clus-
ters w.r.t. an auxiliary variable while minimizing the MI w.r.t.
the original data [16]. From a neuroscience perspective, neural
responses to natural stimuli have been analyzed, in which the
information carried by a spike is measured and optimized w.r.t.
a projection [17].

The purpose of this paper is to overcome the difficulties of MI
estimation and its application to FE, by means of an entropy es-
timation method that has succeeded in independent component
analysis (ICA). Our proposal for MI estimation can be viewed
as an heuristic in which the sum of 1-D MIs is com-
puted instead of the . We obtain the gradient of each vari-
able w.r.t. a projection, so that we can search for the most infor-
mative projection from the multidimensional input. Then, we
describe the extension of the method to obtain multiple projec-
tions.

III. MAXIMIZATION OF MUTUAL INFORMATION

FOR FEATURE EXTRACTION

In this section, we introduce our maximization of mutual
information (MMI) algorithm for FE. We begin explaining
the mixture model on which our methodology is based. In
Section III-A, we provide a theoretical justification of MI usage
when a mixture model with both relevant and noise features is
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Fig. 1. Model assumed for the mixture of signals. The vector s groups the
relevant variables (for classification); s groups the noisy ones. Each x is a
mixture of signals from both types of variables.

assumed for the data. In Section III-B, we theoretically discuss
the feasibility of the alternative criterion given by ,
instead of . We describe the estimation of both the
entropy and the MI in Section III-C, as well as the method for
the extraction of each individual feature. After that, we describe
in Section III-D how a number of features are obtained.

A. Mixture Model

Each of the features in the observed data can be assumed to be
generated by a mixture of unknown signals as shown in Fig. 1.
This is similar to the blind source separation (BSS) scheme, in
which every observed signal is thought of as a mixture of un-
known, statistically independent signals. In our case, the prop-
erty assumed for the unknown signals is that there are two types
of sources : the ones that are relevant and contain a certain
degree of dependence w.r.t. the class (which are grouped in ),
and the ones that are independent of the class vector, which can
be considered as noisy sources (in ).

The vector is characterized by its statistical irrelevancy,
i.e.,

(4)

In the following, we briefly prove that, in such case:

To prove it, we start by assuming the matrix to be invert-
ible, so that the following holds:

By applying the Bayes rule, we get

(5)

According to the theorem of statistical sufficiency, is said
to be (statistically) irrelevant if

In that case, (5) can be rewritten as

Finally, we conclude the proof by marginalizing w.r.t.

We now demonstrate that an orthonormal matrix is sufficient
to recover the separation between relevant and irrelevant fea-
tures. This is important because it allows us to constrain our
search on the group of orthonormal matrices, instead of doing it
on the ring of matrices.

If is invertible, separates and . Let be the
QR decomposition of , so that is orthonormal and is
lower diagonal. In that case, . Let be
defined as , so that . Since is upper
diagonal, is separated in relevant and irrelevant features only
if has also been separated. Thus, if itself consists of either
relevant or irrelevant projections, it means that has the struc-
ture , being the matrix whose vectors project
the relevant features and the one that projects the noisy ones.
Summarizing, there always exists an orthonormal ma-
trix that, provided that and are as in Fig. 1, fulfills

(6)

B. Global MI and Individual MIs

The approximation of involves the entropy estimation
of multidimensional data. From (1), we get

being each of the classes and each of their a priori
probability.

The estimation of and each from a set of sam-
ples is a problem that has not been successfully solved in an

-dimensional space. However, good estimators exist for 1-D
variables. This is why we use an alternative cost function: the
sum of MI between individual projections and labels, i.e.,

(7)

where the s are the columns of the matrix as in (6).
In the following, we obtain the relationship between the func-

tion to be maximized in (7) and the ideal one, as expressed in
(3). The sum of the output MIs is given by

(8)
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Fig. 2. Proposed scheme for MMI. The previous PCA performs a lossless trans-
formation and whitens the input features. The dimension reduction is actually
performed by the MMI block.

On the other hand, the inner MI corresponding to the “inter-
action” of the features is given by

(9)

Similarly, the conditional MI is given by

(10)

The denotes the MI between the s when conditioned
to the classes. By combining the (8)–(10), we obtain

After regrouping some terms, it leads to

(11)

We have characterized the relationship between our cost func-
tion and the information given by . The offset
between both magnitudes is . This offset can be de-
scribed by infinite correlation coefficients of ascending degree,
called cumulants. However, in practice, the cumulants until the
fourth degree are enough to characterize the MI in an ICA con-
text [18]. The cancellation of these cumulants would lead to the
removing of the offset. However, there are two reasons why this
is inadvisable. First, its computational burden is high, because
working with cumulants of fourth degree involves the use of ten-
sors with four dimensions. Second, the objective of performing
ICA while maximizing the FE criterion would excessively con-
strain the search space.

As an alternative, we propose the application of a previous
principal component analysis (PCA) step to reduce the interac-
tion between the output variables, as shown in Fig. 2. This way,
the first- and second-order cumulants are canceled at the input,
and each becomes normalized and uncorrelated to the rest of
variables. If the projections are forced to be orthogonal, the
uncorrelation is preserved at the output, which is the purpose of
the whitening. This way, first- and second-order interactions are
removed in . In Section IV-C, a brief experiment is provided
that suggests the convenience of this whitening.

C. Algorithm: Estimation of the MI and Its Gradient

We now face the problem of estimating each single
in (7) by the approximation of the entropies involved in (8). In
1-D, the entropy can be expressed as

where is the entropy with Gaussian assumption, i.e.,
the entropy that would be obtained if were Gaussian, with
the same mean and variance as in ; is the so-called
negentropy, which is the degree of dissimilarity of a variable
w.r.t. a Gaussian one. It is a nonnegative magnitude (a Gaussian
density is the most entropical among all densities with the
same variance). Some approaches to ICA are based on the
maximization of the negentropy [19], so that the less similar the
pdfs of a source and a Gaussian are, the more likely the source
is to be an independent and informative one.

Popular approaches to the problem of estimating the
[and so the ] from a finite set of realizations are the Edge-
worth and the Gram–Charlier expansions. The Gram–Charlier
expansion estimates the pdf of , so that the entropy is expressed
as a linear combination of moments with increasing degree and
infinite terms, which must be truncated at a certain degree [20].
In practice, a strong sensitivity to outliers appears due to the
terms with the highest degree in the expansion. This leads to
an estimation highly determined by the tails of the distribution,
coming from outstanding, probably erroneous samples.

As an alternative, the use of pairs of nonpolynomial functions
has been proposed, so that one of them is even, and the other one
is odd [19]

where is an “equivalent” (equal mean and variance) Gaussian
random variable of . The use of polynomial functions as

and leads to a Gram–Charlier trun-
cation, which suffers from the lack of robustness mentioned
previously. Some attempts have been carried out to develop ro-
bust expansions in density estimation [21], but its application to
entropy estimation is not straightforward. On the other hand, the
choice of nonpolynomial functions as
and has been proven to be robust and
accurate. This choice leads to the following estimation of the
negentropy:

(12)

with the constants and
; this estimation of has been successfully used in ICA

[22]. Besides, it shows a good numerical behavior when being
maximized. This is the approximation of the negentropy used in
our algorithm.

We now express the MI and its gradient w.r.t. the projections
. Each 1-D MI of (8) can be now reexpressed as

where each refers to subset of samples belonging to class
, and the is estimated according to (12).
If for each projection holds, several simplifications

can be applied, because the are, in this case, variance-normal-
ized, as described in Section III-B.
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By substituting each by its analytical value [7], the MI
can be stated as

We can simplify the expression by noting that if data
are normalized

The variance of the output signal is given by
where is the covariance matrix of . The same relation exists
between each and each . We are now able to set an
expression for the gradient

(13)

where

(14)

Equivalently, the are obtained from the subset of
samples belonging to class . The use of this gradient follows
a standard gradient–ascent procedure.

Although it is known that the entropy of a variable is sensitive
to its variance (with ), the estimation proposed in this sec-
tion scales in a different way, because of our approximation of

[see (12)]. Then, another reason to apply PCA as proposed
in Section III-B, Fig. 2 is that it helps us control the variance of
the output. Otherwise, the estimation would scale exponentially
with the variance, so that the MI estimation would be seriously
biased.

D. Extension to Multiple Projections

So far, we have described a method for obtaining a single
feature that maximizes the MI between it and the classes.
Instead of simultaneously searching for the whole set of relevant
features, according to the cost function in (7), we iteratively
obtain single projections with a decreasing degree of relevance.
This way we avoid some problems with local minima if we do
not simultaneously search the whole set of components.

The iterative search of the sequential projections may take
into account the following two constraints.

1) They must be normalized: , since the scalability
of the negentropy is exponential.

2) Each one must be orthogonal to the projections already ob-
tained, i.e., for . There are two rea-
sons for this. First, we avoid to obtain the same projection
more than once. Second, if we start from an uncorrelated

set of samples such a matrix would preserve this whitening
as explained in Section III-B.

In summary, the set of projections given by the matrix
must be orthonormal. In order to reach orthonormalization, we
obtain, in each iteration, a projection that is forced to be
orthogonal to the ones previously obtained, as well as normal-
ized. There are different ways of dealing with orthogonality con-
straints. In our case, a simple Gram–Schmidt orthonormaliza-
tion has provided good results. Each iteration of the ascent–gra-
dient algorithm for a given projection consists of two steps.
We first move in the direction given by the gradient [see (13)].
Second, the resulting vector is normalized and made orthogonal
to the ones already obtained, by means of the Gram–Schmidt
procedure.

In Sections III-B and III-C, we stressed the reasons why a
previous PCA step must be applied: the features must be nor-
malized and the interaction among them is reduced. Thus, a jus-
tification for imposing orthonormality constraints is that other-
wise the PCA step would not make sense since the uncorrelation
would not be preserved at the output.

The procedure already described can be considered as a top-
down methodology, in which the projections are obtained in a
decreasing order of relevance. As an alternative to the scheme
described, we might sequentially minimize the MI between a
variable and the classes and remove it. Thus, we push the infor-
mation contained in data to the subspace that remains orthog-
onal to the projections rejected. In this case, the direction of the
search is the opposite from the one given in (14). This bottom-up
methodology has the advantage that the number of features re-
quested can be more flexible: we can reject projections until we
notice that no more uninformative features can be found. The
procedure has also a disadvantage: for databases with a high
number of dimensions, the method is computationally intensive
if only few features contain most of the information.

IV. EXPERIMENTS

Here, we perform a set of classification experiments to show
the validity of our approximation and the suitableness of our
method for FE. First, we provide a brief explanation about other
supervised FE methods. Second, we give some details about the
data sets involved in the experiments, the preprocessing carried
out on them, and the classifiers used. After that, we show the re-
sults of our experiments: some considerations about the validity
of the MI estimation, a comparison between the top-down and
the bottom-up versions, and finally, a set of classification exper-
iments in which MMI is compared to other FE methods.

A. Linear FE Methods Used for Comparison

In the following, we provide a brief explanation of SIR, LDA,
CCA, and Torkkola’s MRMI. These are the supervised methods
that, together with unsupervised PCA, have been compared to
MMI.

• Sliced inverse regression (SIR). This method performs a
feature extraction by carrying out an inverse regression,
in which is guessed from . The domain of is par-
titioned in slices, which is straightforward in classifica-
tion: there are as many slices as classes. Then, a PCA-
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like procedure is applied to a weighted covariance matrix
, being each the sample mean

of class . The transformation matrix is obtained from
the eigenvectors of .

• Linear discrimination analysis (LDA). This method ob-
tains a set of projections according to which the largest dis-
tance between classes is achieved, in terms of Fisher dis-
criminant. Let be the so-called between-class scatter
matrix, given by , where

is the inner mean of class and the global mean.
Let also be the within-class scatter matrix, given by

, being the covariance matrix
of samples belonging to class . The objective is to maxi-
mize the cost function . The
projection that maximizes the criterion is the one given by
the eigenvector related to the highest eigenvalue in the sin-
gular value decomposition .

• Canonical correlation analysis (CCA). The aim of
CCA is to obtain a pair of linear transformations in
such a way that, when applied to the two input sig-
nals (in this case, one of them is 1-D), the correla-
tion between the outputs is maximized. CCA searches
for a couple of projections and such that
the correlation between and , given by

, is
maximized.

• Maximization of quadratic information (MRMI). This
method optimized an alternative measure of information
called quadratic information [8], which is maximized in
Torkkola’s algorithm, as mentioned in Section II. The pdfs
involved are estimated by a Parzen model. The maximum
is reached by a gradient search on the projection matrix.

Some of these linear FE methods show a limitation that must
be stressed: they cannot provide more than relevant
projections, being the number of classes. In order to over-
come this difficulty, and to perform a fair comparison with our
method, we propose a method for obtaining an arbitrary number
of projections from these methods for the experiments that need
it. This is done by means of a subspace search. The procedure for
each is as described in Fig. 3. The first one is obtained by di-
rectly projecting the vector on . Thus, becomes the first
vector in . By a Gram–Schmidt orthogonalization, we obtain
a matrix that transforms into an element of the space com-
plementary to . The search of the second component is carried
out in this subspace, and then expanded to the -dimensional
space. Iteratively for the components, the matrix is recom-
puted and each obtained in the subspace orthogonal to the
vectors .

B. Data Sets, Preprocessing, and Classifiers

We have used four different data sets to carry out our exper-
iments. The synthetic nonlinear problem is used by Weston et
al. for testing feature selection techniques [23]. We use it here
to evaluate the performance of the FE methods when facing
data described by highly nonlinear boundaries. To do so, the
synthetic variables have been mixed by means of a random or-
thonormal matrix. The dimension of the data set is 50. Before
the mixing, only two variables are relevant. 1000 samples have

Fig. 3. Algorithm for searching on complementary subspaces. Each projection
is searched on the nullspace of (i.e., the space complementary to) the features
already obtained, so that it is kept orthonormal to them.

TABLE I
CHARACTERISTICS OF THE PUBLIC DATA SETS USED: SAMPLE SIZE,

DIMENSION, AND NUMBER OF CLASSES

been generated for training and 500 for testing. The rest of data
sets consist of real, public data from the University of California
at Irvine (UCI) repository.2 The characteristics of the data sets
are shown in Table I. The data sets have been chosen to evaluate
the method in very different input dimensions as well as num-
bers of classes.

The same set of preprocessing steps has been applied to each
data set involved in the following experiments:

• training data are centered, i.e., their mean is removed;
• after centering, training data are whitened, i.e., PCA is ap-

plied in order to decorrelate the variables, as illustrated in
Fig. 2;

• the same mean and whitening matrix of training data are
applied to test data.

The preprocessing with PCA allows a more fair comparison
with the other methods. MRMI makes use of a spherical Parzen
model for density estimation. A spherical shape of the data
makes the performance of this method better than in the case
that PCA was not applied. The rest of the methods are not
affected by PCA, because they only consider linear discrimina-
tion criteria, which are not affected by linear transformations.

The classification performance of the methods considered has
been evaluated by means of a support vector machine (SVM)
[24] with a Gaussian radial basis function as kernel as well as
a KNN classifier [25]. We have chosen the SVM because it is
a classifier that is proven to be less sensitive to the “curse of
dimensionality” than other methods, so that its performance is
highly correlated with the quantity of information that data carry
about classes. Thus, the performance of SVM is more fair than
other classifiers for comparing FE methods. The hyperparam-
eters of the SVM (the cost and the width of the kernel )
have been chosen by a threefold cross-validation procedure on
the training data. On the other hand, KNN is a classifier that, in

2http://www.ics.uci.edu/~mlearn/MLRepository.html.
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TABLE II
ESTIMATION OF THE MI WITH AND WITHOUT PCA AT THE INPUT (USING THE KNN METHOD DESCRIBED IN [13]).

PCA IS SHOWN TO REDUCE THE INTERACTION AMONG VARIABLES

TABLE III
ESTIMATION OF THE OFFSET BETWEEN COST FUNCTIONS OF (3) AND(7) AT THE OUTPUT (USING THE KNN METHOD [13] AND THE PARZEN MODEL-BASED ONE

[26]). THE ESTIMATED OFFSET (RIGHTMOST COLUMNS) IS LOW WHEN COMPARED TO THE COST FUNCTION (FIRST COLUMN)

spite of its simplicity, provides good performance in addition to
interesting properties concerning the relationship between KNN
and Bayes errors. In the experiments, we use KNN with .

C. Accuracy of the Estimated MI

In the first experiment, we evaluate the validity of estimating
instead of , on the components obtained for

the public data sets. We measured the offset between both mag-
nitudes [see(11)], in order to justify the use of the former instead
of the latter. Also, we experimentally justify the use of PCA ac-
cording to the reasons exposed in Section III-B. In Table II, we
have estimated these magnitudes on the input vectors, by means
of the KNN-based method of Kraskov et al. [13], mentioned in
Section I. The negative numbers in the table are due to the in-
accuracy of the KNN MI estimation, but suggest values close to
zero. The results show that the use of PCA reduces the offset in
the three cases studied, which justify its use as a preprocessing
step. In Table III, we have estimated the offset for the output
features. In this case, another estimator of the MI has been used,
based on a Monte Carlo estimation of the entropy from a Parzen
density model of the data sets. The width of the window has been
chosen by a cross-validation maximum-likelihood (ML) proce-
dure, as proposed in [26]. Both methods have been used to ob-
tain the offset on the three data sets. The results for the first ten
components obtained by top-down MMI (TD-MMI) are shown
in Table III. There it can be seen that, according to these esti-
mations, the deviation from the value can be considered
small enough to justify the use of as a valid cost
function. This fact provides us with a criterion for selecting the
number of features to be obtained. Since the model presented
in Fig. 1 is ideal and does not have to correspond to a real sit-
uation, a certain loss of information occurs, independently of
the number of features to be obtained. Let us denote this in-
formation loss by . A methodology for determining from
may consist of first obtaining projections, and then selecting

from them so that

Fig. 4. Comparison between the MI obtained by TD-MMI and BU-MMI for
landsat data set.

This would be an alternative to criteria such as Akaike informa-
tion [27] or minimum description length (MDL) [28], which are
difficult to apply in this context.

D. TD-MMI versus BU-MMI

In the second experiment, we compare the top-down version
of MMI with the bottom-up one. The landsat data set has been
used, because its dimension is not too high, which allows us
to use the bottom-up approach with a reasonable computational
cost. The value for the MI obtained for each feature is displayed
in Fig. 4. The bottom-up MMI (BU-MMI) provides a poor per-
formance, which is not surprising. This version of the algorithm
requires a higher number of iterations. The inaccuracy of the MI
estimation may be accumulated in each iteration, so that some
information can be lost with each projection rejected. As a re-
sult, the features preserved have a lower MI than the features
obtained by the top-down approach.



1440 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 5, SEPTEMBER 2007

TABLE IV
PERCENTILE CLASSIFICATION ACCURACY ON THE

NONLINEAR SYNTHETIC DATA SET

TABLE V
PERCENTILE CLASSIFICATION ACCURACY ON THE LAND SATELLITE DATA SET

TABLE VI
PERCENTILE CLASSIFICATION ACCURACY ON THE OPTICAL DIGITS DATA SET

E. Classification Experiments

In the last experiment, the TD-MMI is compared to the
methods described in Section IV-A on the four data sets of
Table I.

The results, for the classifiers described and several degrees
of reduction are displayed in Tables IV–VII. The raw data row
shows, in each case, the result obtained by an SVM on the orig-
inal, not reduced data.

TABLE VII
PERCENTILE CLASSIFICATION ACCURACY ON THE LETTER DATA SET

The most remarkable result by MMI is the one on the most
nonlinear data set, which is the first one. Only MRMI and MMI
are able to obtain the discriminative information, and MMI does
it better than MRMI. The rest of the methods fail since this data
set contains features that are nonlinearly separable.

In the second experiment, MMI and PCA obtain the best re-
sults on the landsat data set. In this case, the most discriminative
information seem to rely on the most powerful directions on the
data, which is why PCA reaches that good result.

In the third case, MMI obtain the best result in most of the
cases. However, the difference among the performance of the
methods is tighter.

In the last experiment, on the letter data set, MMI reaches
again the best results for most of the considered reduction de-
grees.

These results suggest that MMI is not worse than any of the
classical methods in any case. However, in an extreme case
of nonlinear class separability, MMI can outperform the other
methods. The good behavior of MMI in the nonlinear synthetic
data set suggests that the enhancement of MMI w.r.t. traditional
methods is higher as 1) data are characterized by higher non-
linear boundaries and 2) the data are more likely to have been
generated by a mixing scheme close to the one described in
Fig. 1. Although MRMI is also strong at finding the relevant
projections, MMI shows a better behavior when facing high-di-
mensional input data, avoiding the overfitting of MRMI’s non-
parametric modeling.

V. CONCLUSION

We have presented a novel method for linear FE in classifi-
cation, based on the maximization of the MI between the fea-
tures obtained and the classes. The difficulty of the entropy es-
timation for multidimensional data is overcome by a sequen-
tial extraction of the features, so that a 1-D MI estimation can
be applied to each single feature. By a set of experiments, the
method has been shown to be competitive w.r.t. other existing
methods. The best performance of MMI takes place at very high
reduction degrees. Besides, the method outperforms classical
FE methods in situations in which the boundaries between the
classes are strongly nonlinear, without suffering from the over-
fitting in high-dimensional input spaces as other nonparametric
procedures.
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